
1

Byzantine Fault-Tolerant Consensus in Wireless
Ad hoc Networks

Henrique Moniz, Nuno F. Neves, Miguel Correia

Abstract—Wireless ad hoc networks, due to their inherent unreliability, pose significant challenges to the task of achieving tight
coordination amongst nodes. The failure of some nodes and momentary breakdown of communications, either of accidental or
malicious nature, should not result in the failure of the entire system. This paper presents an asynchronous Byzantine consensus
protocol - called Turquois - specifically designed for resource-constrained wireless ad hoc networks. The key to its efficiency is the fact
that it tolerates dynamic message omissions, which allows an efficient utilization of the wireless broadcasting medium. The protocol
also refrains from computationally expensive public-key cryptographic during its normal operation. The protocol is safe despite the
arbitrary failure of f < n

3
nodes from a total of n nodes, and unrestricted message omissions. Progress is ensured in rounds where the

number of omissions is σ ≤ dn−t
2
e(n− k− t) + k− 2, where k is the number of nodes required to terminate and t ≤ f is the number

of nodes that are actually faulty. These characteristics make Turquois the first consensus protocol that simultaneously circumvents the
FLP and the Santoro-Widmayer impossibility results, which is achieved through randomization. Finally, the protocol was prototyped
and subject to a comparative performance evaluation against two well-known Byzantine fault-tolerant consensus protocols. The results
show that, due to its design, Turquois outperforms the other protocols by more than an order of magnitude as the number of nodes in
the system increases.

Index Terms—Wireless ad hoc networks, Byzantine Fault Tolerance, Consensus, Distributed Algorithms.

F

1 INTRODUCTION

Wireless ad hoc networks have been the subject of consid-
erable attention within the research community for the past
few years. Unlike managed wireless networks, which have
infrastructural support from fixed components (e.g., an access
point), wireless ad hoc networks exist without any form of
centralized control. There is no notion of infrastructure and
every node, in principle, plays an equal role on the network
operation. The decentralized nature of these networks makes
them particularly suited for emergency situations like natural
disasters and military conflicts, where the reliance on a single
point of failure is not only inappropriate, but maybe even
unattainable.

The ability for nodes to conduct coordinated activities is
of paramount importance in many ad hoc networking appli-
cations. Nodes that are within communication range of each
other often have to share a common physical resource. Hence,
some form of coordination is required such that the access
to that resource is fair and efficient. For example, it can be
the electromagnetic spectrum, where nodes synchronize their
broadcasting periods to prevent overlap [1], [2]; it can be a
road, where a set of semi-automated vehicles standing at an
intersection have to decide on the order in which they cross [3];
or it can even be the airspace, where aircraft coordinate their
maneuvering in order to avoid collisions [4], [5]. All these

During this work, H. Moniz was with the Large-Scale Informatics System
Laboratory (LASIGE) of the University of Lisbon and with Microsoft Research
Cambridge. N. F. Neves is with the Large-Scale Informatics System Laboratory
(LASIGE) of the University of Lisbon. M. Correia is with INESC-ID/IST.

This work was partially supported by the EC through project FP7-257475
(MASSIF), by the FCT through the Multiannual program, project PTDC/EIA-
EIA/113729/2009 (SITAN), and project PEst-OE/EEI./LA0021/2011 (INESC-
ID).

activities require some sort of agreement among the nodes,
which has to be performed in a dependable way.

The consensus problem is a fundamental abstraction of this
necessity for agreement in a distributed system. Informally,
the problem states that every node proposes a value, and
then the nodes have to decide on a common result. Basically,
any kind of coordinated activity amongst the nodes of a
distributed system can be reduced to consensus. Consequently,
a consensus primitive can be applied by the nodes of a
wireless ad hoc network to coordinate their actions. Despite
being simple to describe, consensus is far from being a
trivial problem and has associated impossibility results in
systems where nodes or communication links can fail [6],
[7]. Wireless networks, in particular, are inherently unreli-
able. Environmental phenomena such as interference, fading,
and collisions give rise to pervasive communication failures,
and node mobility may result in momentary disconnection.
In addition, wireless ad hoc networks are usually resource-
constrained. They usually have less bandwidth than wired local
networks, and the computational power of their nodes is often
more restricted.

To make matters more challenging, ad hoc networks can
be deployed in hostile environments in which both the nodes
and the communication can be attacked. In particular, nodes
may exhibit arbitrary (or Byzantine) behavior due to intrusions
and actively strive to disrupt the correct operation of the sys-
tem. Over the years, several Byzantine fault-tolerant protocols
have been proposed for LAN settings, for example, to build
replicated services and group communication protocol stacks
(e.g., [8], [9]). However, very little work has been done in
designing Byzantine fault-tolerant protocols for wireless ad
hoc networks.

This paper aims at conciliating Byzantine fault tolerance

2

with the unreliable and resource-constrained nature of ad hoc
networks. To achieve this, the paper focuses on the problem
of Byzantine fault-tolerant binary consensus for single-hop
wireless ad hoc networks, while assuming a system model
that closely matches the reality of wireless environments. In
particular, it is assumed that nodes are subject to transitory
disconnection (due to mobility or unreliable communication)
and permanent corruption by a malicious entity. The focus
on the single-hop scenario is directly related to the fact
that nodes within direct communication range of each other
frequently have to synchronize their actions due to their
physical proximity. While consensus may also be useful in
multi-hop scenarios, any single-hop protocol can be adapted
to a multi-hop scenario if supported by an adequate routing
layer (e.g., [10], [11]), which is a well-studied problem in the
context of wireless networks.

A system model that accurately captures the fundamental
characteristics of the environment is crucial for efficiency.
Since a wireless network provides a natural broadcasting
medium, the cost of transmitting a message to multiple nodes
can be just the same of sending it to a single one, as long as
they are within communication range. Properly exploited, this
property can have a profound impact on performance. How-
ever, to take advantage of this property one needs to depart
from the traditional modeling assumptions of Byzantine fault-
tolerant systems. Usually these assume a reliable point-to-point
communication model, which hinders any possibility of taking
advantage of the broadcasting medium (because it forces the
implementation of end-to-end message delivery mechanisms,
e.g., TCP). Thus, the underlying model should also embrace
the inherent unreliability of radio communications.

To this end, we propose a model that derives from the
communication failure model introduced by Santoro and Wid-
mayer [7]. Their model assumes the existence of dynamic and
transient transmission faults, meaning that any communication
from one node to another can be faulty at one moment and be
correct at another. In a wireless environment, this implies that
any broadcast message may be delivered non-uniformly by the
intended recipients. Some of them may deliver the message,
while others may not. Under particularly harsh conditions, like
a jamming attack, even all messages may be lost during a
period of time.

More concretely, our model assumes an asynchronous sys-
tem composed of n ad hoc nodes where a subset f of them
may be compromised by a malicious adversary (with f < n

3).
Compromised nodes can fail in an arbitrary manner, namely
by sending messages with erroneous content or by simply
becoming silent. Therefore, we will consider that potentially
all transmissions from these nodes might be lost (or discarded),
either due to network omission faults or bad behavior. Ad-
ditionally, we will assume the existence of dynamic omis-
sion transmission faults that might affect the communications
between correct nodes. Our consensus protocol will ensure
progress towards a decision in rounds where the number of
omissions of messages transmitted between correct nodes is
bounded by σ ≤ dn−t2 e(n − k − t) + k − 2 (where k is the
number of nodes required to decide and t ≤ f is the number
of nodes that are actually faulty). If a higher number of faults

occur, then the protocol always ensures safety, but progress
might be stopped or continue at a slower pace until the network
starts to lose less messages.

The paper has the following contributions:
(1) A binary consensus protocol, named Turquois1, designed

to tolerate a combination of Byzantine nodes and dynamic
omission transmission faults.

(2) Since the system is asynchronous and can have both
Byzantine nodes and dynamic omission faults, consensus is
bound by the impossibility results of [6], [7]. Turquois circum-
vents these impossibility results by employing randomization,
ensuring termination with probability 1.

(3) A novel mechanism for broadcast message authentica-
tion that resorts to an inexpensive hashing operation instead
of typical public-key cryptography, preserving the computa-
tional restrictions usually associated with mobile nodes and
increasing efficiency.

(4) An extensive performance evaluation of Turquois, both
in a network simulator and in a real-world testbed, which in-
cludes a detailed comparison with two well-known Byzantine
fault-tolerant binary consensus

The remainder of the paper is organized as follows. Sec-
tion 2 discusses the related work. Section 3 presents the system
model and defines the k-consensus problem, which is essen-
tially the classic consensus problem adapted to our system
model. Section 4 presents Turquois, our randomized algorithm
to k-consensus that tolerates both dynamic omission failures
and Byzantine nodes. Section 6 evaluates the performance of
Turquois in both a real-world testbed and a simulation environ-
ment. Section 7 presents our conclusions. Finally, the complete
correctness proof of Turquois is presented in Appendix A.

2 RELATED WORK

Over the past decade, there have been some contributions
to the solution of consensus in wireless ad hoc networks,
however, almost all of them did not consider the presence of
Byzantine nodes. Research on Byzantine fault-tolerant proto-
cols for wireless environments has been practically restricted
to broadcasting problems [12], [13], [14], [15], [16].

Consensus in wireless ad hoc networks. Concerning the
problem of consensus, Badache et al. were the first to present
a protocol specifically for wireless environments [17]. Their
solution considers that mobile hosts (MHs) are connected to
fixed mobile support stations (MSSs), which are assumed to be
fully connected. To solve consensus, each MH communicates
the initial proposal value to the respective MSS. The MSSs
execute amongst themselves the Chandra-Toueg consensus
protocol using a �S failure detector [18], and then commu-
nicate the decision value to the associated MHs. Later on, this
work was extended by Seba et al. to take into consideration
the dynamism in the set of MSSs executing consensus due to
the handover of MHs [19].

Wu et al. describe a hierarchical consensus protocol for
mobile ad hoc networks [20]. Their protocol selects a subset
of predefined mobile nodes to act as clusterheads, which

1. Turquois: 1. a semiprecious stone, typically opaque and of a sky-blue
color; 2. french for Turk, historic enemy of the Byzantine.

3

take essentially the same role of the MSSs in the protocol
of Badache et al. [17]. The clusterheads gather the initial
values of their associated nodes and execute consensus using a
�P failure detector. The decision is then propagated from the
clusterheads to the nodes. Vollset et al. present randomized
consensus protocols that tolerate crashing nodes and arbitrary
topological changes [21]. Their solution, however, requires a
fairness condition where correct nodes are not permanently
disconnected.

Consensus with dynamic omission failures. The research
discussed so far in this section assumes reliable links. In
this paper, we address the consensus problem under a model
that extends the communication failure model of Santoro and
Widmayer [7], [22]. The communication failure model has
an associated impossibility result, stating that there is no
deterministic solution to the problem of k-agreement (i.e.,
k > dn2 e nodes decide the same value 0 or 1) if more than
n−2 messages can be lost at each synchronous communication
round. This is a very restrictive result because a single node
crash causes n omission failures per round, thus preventing
consensus.

Chockler et al. described a consensus algorithm for a system
where nodes can fail by crashing and messages can be lost
due to collisions [23]. Their protocol can solve consensus due
to the additional power offered by collision detectors, which
allow nodes to take measures to recover from message losses.
Message omissions other than those due to collisions, however,
are not covered by their model.

Borran et al. [24] address consensus under the heard-of
model (HO) [25], which permits a fine-grained specification of
the patterns of message delivery allowed for the problem to be
solvable. This work uses the HO model to express the Paxos
algorithm [26] and extend it with a communication layer for
wireless networks, which provides a leader election service.
The reliance on a leader may not be very appropriate in
some ad hoc scenarios, and the problem of dynamic omission
transmission failures is not taken in consideration because
the protocol assumes periods of reliable and delay bounded
message deliveries.

Biely et al. also employs the HO model to distinguish cases
where the fault pattern exceeds the upper bound of Santoro and
Widmayer, but not in a harmful way to the system (e.g., n−1
faults are harmful if they originate at the same node, but may
not be if they originate each one at a different nodes) [27]. The
work of Schmid et al. presents an analogous contribution in the
sense that it limits the number of faults that each node may
experience [28]. None of these two contributions, however,
deal with the essence of the Santoro-Widmayer impossibility
result because faults are artificially restricted.

Moniz et al. address this issue by presenting a randomized
consensus algorithm that tolerates a new upper bound of
dn2 e(n − k) + k − 2 dynamic omission failures per commu-
nication round, regardless of their pattern [29]. The protocol
described in this paper tolerates not only dynamic transmission
omission faults, but also a static, a priori unknown, subset of
Byzantine nodes.

Consensus with message loss. Some classical protocols
in the literature tolerate arbitrary message loss in their chan-

nels (e.g., Paxos [26], [30], BFT [31], and Fast Byzantine
Paxos [32]). As with Turquois, these protocols maintain safety
despite unrestricted message loss. There protocols, however,
rely on a leader node for progress. Liveness is ensured only
if correct nodes agree on the identity of the leader and can
communicate with the leader in a reliable and timely manner.
This assumption is what allows these protocols to circumvent
the Santoro-Widmayer impossibility result.

More recently, Borran & Schiper introduced a protocol that,
like ours, is leader-free, tolerates Byzantine nodes, and is
always safe regardless of the number of omission faults [33].
To circumvent the Santoro-Widmayer impossibility result,
their model assumes the existence of a Global Stabilization
Round (GSR), after which communication between correct
nodes is assumed to be reliable. In other words, there are no
omission faults in the system involving correct nodes after a
specific, but unknown, point in time (i.e., the GSR).

3 SYSTEM MODEL AND PROBLEM DEFINITION

System model. The system is composed by a fixed and known
set of n nodes, each one running a single process belonging
to Π = {p0, p1, ..., pn−1}. The communication between pro-
cesses proceeds in asynchronous broadcast rounds. At each
round, every node pi ∈ Π transmits a message m to every
node pj ∈ Π, including itself, by invoking broadcast(m).
A round r is defined as the rth time that nodes invoke the
broadcast() primitive and is triggered by a clock tick local
to each node.

The fault model assumes that up to f nodes can be Byzan-
tine, and that these nodes may fail in an arbitrary way. For
example, a Byzantine node can become silent, send messages
with wrong values, or collude with other Byzantine nodes to
disrupt the correct operation of the system. Such nodes are
said to be faulty, while nodes that follow the algorithm are
called correct.

The fault model also accommodates dynamic omission
failures in message transmissions amongst correct nodes. A
transmission between two correct nodes pi and pj is subject
to an omission failure if the message broadcast by pi is not
received by pj . The number of omission failures that can occur
per round is unrestricted, in the sense that safety properties
are always guaranteed. However, in order to ensure progress,
we will make the following fairness assumption: given an
unbounded number of rounds, there are infinitely many rounds
in which the number of omission faults that affect correct
nodes is bounded by a σ value (see protocol description). If a
message m transmitted by node pi to node pj is not subject to
a dynamic omission failure and both nodes are correct, then
m is eventually received by pj .

Cryptographic functions employed in the protocol are secure
and can not be subverted by an adversary, and each node pi ∈
Π can call a local random bit generator to obtain unbiased bits
observable only by pi.

Problem definition. The paper addresses the k-consensus
problem. This problem considers a set of n nodes where each
node pi proposes a binary value vi ∈ {0, 1}, and at least
k of them have to decide on a common value proposed by

4

one of the nodes (with n+f
2 < k ≤ n − f). The remaining

non-Byzantine nodes (at most n− k) do not necessarily have
to decide, but if they do, they are not allowed to decide on
a different value. Our problem formulation is designed to
accommodate a randomized solution and is formally defined
by the properties:
• Validity. If all correct nodes propose the same value v,

then any correct node that decides, decides v.
• Agreement. No two correct nodes decide differently.
• Termination. At least k correct nodes eventually decide

with probability 1.
The consensus problem in its binary variant can either be

used in itself (e.g., Atomic Commitment [34]) or as a building
block for other useful protocols. It is a well-studied problem
of how to apply binary consensus as a black box to solve,
for example, multi-valued consensus or atomic broadcast [35],
[36], [37], [38], [39], [40].

4 TURQUOIS: BYZANTINE k-CONSENSUS
The Turquois algorithm allows k nodes out of n to reach
consensus on a binary value v ∈ {0, 1} (see Algorithm 1).
Correctness is maintained as long as the number of Byzantine
nodes is bounded by f < n

3 . Furthermore, the algorithm
ensures safety (i.e., the validity and agreement properties)
despite an unrestricted number of transmission omission faults.
Progress towards termination is guaranteed in rounds where
the number of omission faults is σ ≤ dn−t2 e(n−k−t)+k−2,
where t ≤ f is the number of nodes in the system that are
actually faulty. Turquois is a randomized algorithm as it relies
on each node pi having access to a local coin2 mechanism that
returns random bits observable only by pi (e.g., [43], [44]).
The first local coin protocol was proposed by Ben-Or, of which
our protocol is reminiscent [43].

Intuitively, the algorithm is structured around a cycle of
three phases. The phases of the cycle are called CONVERGE,
LOCK, and DECIDE. A node is in each one of these phases
when its phase value is, respectively, φi (mod 3) = 1, φi
(mod 3) = 2, and φi (mod 3) = 0. The cycle is repeated
as long as it is necessary for the nodes to decide on a
common value. Each phase in the cycle plays a specific
purpose. In the CONVERGE phase, nodes try to converge their
proposal values by updating their proposal value vi to the value
observed most times in that phase. Next, in the LOCK phase,
nodes try to lock on a single value v ∈ {0, 1}. Each node either
sets its proposal value to this v or to a value ⊥ indicating
a lack of preference. Finally, in the DECIDE phase, nodes
attempt to decide on the value locked on the previous phase.
If a node is not able to decide at the end of a DECIDE phase, it
may propose a random value at the beginning of the following
cycle. This random step guarantees that eventually there is a
cycle that starts with enough correct nodes proposing the same
value. When this happens, k correct nodes necessarily decide
by the end of that cycle.

Additionally, the algorithm resorts to a message validation
procedure for every message received (lines 8-9), which is

2. As opposed to a shared coin that returns bits observable by all nodes
(e.g., [41], [42]).

described in detail in Section 5. The validation procedure lim-
its the power of Byzantine nodes by providing authentication
and enforcing congruency in the proposal values. It is useful
to analyze the algorithm being mindful that the validation
procedure provides these properties. This design is akin to the
contribution of Srikanth & Toueg on simulating authenticated
broadcasts for Byzantine algorithms [45].

Algorithm 1: Turquois: a Byzantine k-consensus algorithm
Input: Initial binary proposal value proposali ∈ {0, 1}
Output: Binary decision value decisioni ∈ {0, 1}

1 φi ← 1;
2 vi ← proposali;
3 statusi ← undecided;
4 Vi ← ∅;

TASK T1:
5 when local clock tick do
6 broadcast(〈i, φi, vi, statusi〉);
7 end

TASK T2:
8 when m = 〈j, φj , vj , statusj〉 is received do
9 Vi ← Vi ∪ {m : m is valid};

10 if ∃〈∗, φ, v, status〉 ∈ Vi : φ > φi then
11 φi ← φ;
12 if φ (mod 3) = 1 and v is the result of a coin flip then
13 vi ← coini();
14 else
15 vi ← v;
16 end
17 statusi ← status;
18 end

19 if |{〈∗, φ, ∗, ∗〉 ∈ Vi : φ = φi}| > n+f
2

then

20 if φi (mod 3) = 1 then /* phase CONVERGE */
21 vi ← majority value v in messages with phase φ = φi;

22 else if φi (mod 3) = 2 then /* phase LOCK */

23 if ∃v∈{0, 1}: |{〈∗, φ, v, ∗〉 ∈ Vi : φ = φi}| > n+f
2

then
24 vi ← v;
25 else
26 vi ← ⊥;
27 end
28 else /* phase DECIDE */

29 if ∃v∈{0, 1}: |{〈∗, φ, v, ∗〉 ∈ Vi : φ = φi}| > n+f
2

then
30 statusi ← decided;
31 end
32 if ∃v∈{0, 1}: |{〈∗, φ, v, ∗〉 ∈ Vi : φ = φi}| ≥ 1 then
33 vi ← v;
34 else
35 vi ← coini();
36 end
37 end
38 φi ← φi + 1;
39 end
40 if statusi = decided then
41 decisioni ← vi;
42 end
43 end

Each node pi has an internal state comprised by three vari-
ables: (1) the phase φi ≥ 1, (2) the proposal value vi ∈ {0, 1},
and (3) the decision status statusi ∈ {decided, undecided}.
Each node starts its execution with φi = 1, statusi =
undecided, while vi is set to the initial proposal value
indicated by the input parameter proposali (lines 1-3). Each
node also maintains a set Vi, initially set to empty (line 4),
where it keeps the messages received throughout the execution

5

of the algorithm.
The algorithm is run in parallel by tasks T1 and T2,

which are activated by the respective when condition (lines
5 and 8). When activated, a task runs towards completion
without any interruption from the other task. Task T1 defines
a broadcasting round and is activated periodically upon a local
clock tick (lines 5-7). A node pi broadcasts a message of
the form 〈i, φi, vi, statusi〉 containing its identifier i and the
variables that comprise its internal state.

Task T2 is activated whenever a message arrives (lines 8-
43). Some of the messages that a node is supposed to receive
may be lost, or may carry invalid content if transmitted by a
Byzantine node. Therefore, all arriving messages are subject to
a validation procedure that constrains the wrongful actions of
Byzantine nodes. Essentially, a message is considered valid if
it could have been sent by a node that followed the algorithm
(details in Section 5). Valid messages are accumulated in set
Vi (line 9), while the others are discarded.

Based on its current internal state and the messages accu-
mulated in set Vi, a node pi performs a state transition, which
happens when one of two conditions occur:

1) the set Vi holds some message whose phase value φ is
higher than the current phase φi of pi;

2) the set Vi holds more than n+f
2 messages whose phase

is equal to the current phase φi of pi.
The first case is as follows (lines 10-18). When the condition

is met (line 10), node pi updates the state to match the state
of the received message, with a slight exception. The special
instance is the following: if the phase value is φ (mod 3) = 1
and the value v was obtained from the result of a coin flip
(which can be verified from the validation procedure described
in Section 5), then pi executes a local coin flip to determine vi
(lines 12-13). Since it is not possible to force Byzantine nodes
into a fair coin flip, this step becomes necessary to guarantee
that correct nodes assume a random value.

The second case involves more steps (lines 19-39). The
way a node pi updates its state depends on the value of its
current phase number φi modulo 3. In CONVERGE phases
(φi (mod 3) = 1) the proposal value is set to the majority
value of all messages with phase value φ = φi (lines 20-21).

In LOCK phases (φi (mod 2) = 2) the proposal value vi
is updated the following way (lines 22-27): if there are more
than n+f

2 messages of the form 〈∗, φ, v, ∗〉 in Vi with φ =
φi and the same value v, then vi is set to v (lines 23-24),
otherwise it is set to a special value ⊥ /∈ {0, 1} indicating a
lack of preference (lines 25-26). This step ensures that in the
following phase φi + 1 every node either proposes the same
value v ∈ {0, 1} or ⊥. Furthermore, if there was unanimity
amongst correct nodes at the previous phase φi−1, then every
node must set its proposal value to the same value v (since
messages with a different value are considered invalid). This
will imply that in the next phase φi + 1 every node receives
the same value v ∈ {0, 1} in all valid messages and decides.

In DECIDE phases (φi (mod 2) = 0), a node sets statusi
to decided if there are more than n+f

2 messages of the form
〈∗, φ, v, ∗〉 in Vi with φ = φi and the same value v 6= ⊥ (lines
29-31). The proposal value vi is set to v if there is at least
one message of the form 〈∗, φ, v, ∗〉 in Vi with φ = φi and

a value v 6= ⊥. Otherwise, vi is set to the value of function
coin(), which returns a random number 0 or 1, each with
probability 1

2 (lines 32-36). Regardless of the previous steps,
the phase is always incremented by one unit (line 38).

At the end of each round, a node pi checks if statusi
has been set to decided. If so, it decides by setting the
output variable decisioni to the current proposal value vi
(lines 40-42). Further accesses to this variable do not modify
its value. Hence, they have no impact on the correctness of
the algorithm. The full correctness proof can be found in
Appendix A.

As stated before, the algorithm is safe despite unrestricted
message omissions and ensures progress in rounds where the
number of omissions is σ ≤ dn−t2 e(n−k−t)+k−2. It is wor-
thy to stress that omissions of message transmissions between
correct nodes are accounted in sigma. Any faulty behavior
involving Byzantine nodes, including message omissions, is
already fully captured by t ≤ f , the number of Byzantine
nodes actually present in the system. Furthermore, although
σ ≤ dn−t2 e(n − k − t) + k − 2 is a sufficient condition for
progress, there may be instances where it is not necessary.
For example, when some messages are omitted in one round
and are the only ones received in a subsequent round, it may
be the case where in both rounds the number of omissions is
higher than sigma, but both rounds combined accumulate the
sufficient messages in some set Vi such that pi increments its
phase number.

Regarding the storage requirements for the algorithm and
the message size, these are both O(n). The storage asymptotic
upper bound is driven by vector Vi. This vector only needs to
maintain messages with phase value φ >= φ − 2, which are
necessary for semantic validation described in the following
section. Since the phase value of a node always matches the
message received with the highest phase value (lines 10-11),
this implies the storage of O(n) messages. The message size
is O(n) also because of the semantic validation.

5 VALIDATION OF MESSAGES

A node pj must check the validity of arriving messages before
adding them to set Vj . This procedure is fundamental to the
correct operation of the protocol because it limits the wrongful
actions that a Byzantine node can accomplish. There are two
types of validation that a message must pass: authenticity
validation and semantic validation. The first guarantees that
some of the fields of a message were actually generated by
a node pi, while the second ensures that the contents of
a message are congruent with the current execution of the
algorithm. A message is deemed valid if it passes both tests.

5.1 Authenticity Validation
This form of validation provides (partial) message authenti-
cation. More precisely, for any message 〈i, φ, v, status〉, it
provides to a receiving node pj assurance that the values of φ
and v originated at the alleged source node pi. This statement
deserves the following caveat. The authenticity of the status
variable is not protected by this mechanism. Consequently,
it is possible for a malicious entity to replay a message

6

〈i, φ, v, status〉 with an arbitrary status value. This, however,
does not impact the correctness of the protocol because our
semantic validation mechanism (see next section) requires
nodes to justify their status based on the received proposal
values, therefore, making the attack ineffective.

Authentication is based on a mechanism for generating
and verifying one-time hash-based message signatures that is
particularly efficient for a round-based group communication
protocol with a small domain of input values. In our case, the
mechanism is devised for an input domain of three values (0,
1, and ⊥), which represents the possible proposal values that
a message can have. To the best of our knowledge, this is
the first time such a mechanism is employed in an agreement
protocol.

The mechanism is composed by a generic message authen-
tication procedure for each phase of the k-consensus protocol,
and by a key exchange procedure that has to be executed
periodically. The message authentication resorts to an efficient
one-way hash function H to generate hash values of length h
(e.g., SHA-256 or RIPEMD-160) [46]. The key exchange pro-
cedure resorts to a more computationally expensive trapdoor
one-way function F (e.g., RSA [47]) that is used to sign an
array of verification keys. It is assumed that each node pi has
an associated public/private key pair to be used in F , where
pui is the public key and pri is the private key. Every node
knows the public key of all other nodes.

5.1.1 Key Exchange
The key exchange procedure generates m secret keys, which
are essentially random bit strings of length h, and distributes
the corresponding verification keys. These are valid for m
phases of the k-consensus protocol. If m is equal to or larger
than the number of phases required to reach consensus, then
the key exchange procedure only needs to be executed once,
at the beginning of the k-consensus protocol. Potentially, this
scheme can be further optimized so that a single key exchange
can span multiple instances of the k-consensus. Nevertheless,
for clarity purposes, we describe the scheme assuming only a
single instance.

For each node pi, the key exchange e ≥ 1 consists of the
following steps. Node pi generates a two-dimensional array
SKi of secret keys, such that each element SKi[φ][v] is a
random bit string of length h, with (e − 1)m + 1 ≤ φ ≤
em and v ∈ {0, 1,⊥}3. It then creates an equivalent two-
dimensional array V Ki of verification keys, such that each
element V Ki[φ][v] = H(SKi[φ][v]). Finally, the verification
keys array V Ki is signed using the trapdoor one-way function
F and the private key pri, and then both the V Ki and the
signature are disseminated to the other nodes using an out-of-
band reliable channel.

When V Ki arrives to a node, the correctness of the keys
is confirmed by verifying the signature with the public key of
pi, and then the array is stored for future use. For efficiency
purposes, the first V Ki array can be distributed offline along
with the public keys. Subsequent arrays may be transmitted

3. In practice, SKi[φ][⊥] only needs to be generated if φ (mod 3) = 0
because ⊥ is an acceptable proposal value only in such phases.

during idle periods of the system such that interference with
normal execution is kept to a minimum.

5.1.2 Message Authentication

For any phase φ, a message 〈i, φ, v, status〉 broadcast by node
pi is authenticated by attaching SKi[φ][v]. When a node pj
receives the message, it applies the hash function to SKi[φ][v]
and verifies if H(SKi[φ][v]) is equal to V Ki[φ][v]. If they are
equal, then by the properties of cryptographic hash functions
φ and v originated at pi.

5.2 Semantic Validation

The semantic validation ensures that the values carried by the
three states variables within a message are congruent with the
execution of the algorithm. For example, if, at phase φ =
1, every correct node broadcasts the same value 0, then it
is not possible for a node that is executing the protocol to
send a proposal value of 1 at phase φ+ 1. Therefore, if such
proposal arrives, then it must have been sent by a Byzantine
node, and it can be discarded without impacting the protocol.
In practice, this validation mechanism restricts the way that
Byzantine nodes may lie.

There are two ways for the congruency of messages to be
verified: one is implicit and the other is explicit. The implicit
way is based on whenever a node receives a message, it checks
if enough messages have arrived to justify the values carried
by the message just received. For example, if a node has in
set Vi more than n+f

2 messages with phase φ, then, for any
message of the form 〈∗, φ+1, ∗, ∗〉, its phase value is implicitly
valid.

The explicit way is based on broadcasting, along with the
message, the previous messages that justify the values of the
state variables. For example, a message with phase φ+ 1 can
be justified by having appended more than n+f

2 messages of
the form 〈∗, φ, ∗, ∗〉 (and, naturally, the appended messages
must also pass the validity checks).

Our current implementation of the algorithm resorts to both
techniques. First, a node tries an implicit validation, which
is optimistic by nature, and is much more efficient because
messages are allowed to be kept small. However, if, for the
following clock tick, a node is forced to broadcast the same
message, then explicit validation is employed by appending
the justifying messages.

Each of the state variables carried by a message are vali-
dated independently. A message passes this validation test if
all three variables pass in their individual test. The messages
required to validate each variable may sometimes overlap. We
explain in more detail how to perform the validations. The
pseudocode is in Algorithm 2. The pseudocode applies to both
implicit and explicit validation. For the explicit validation, we
assume any appended messages are also present in set Vi.

5.2.1 Phase value

The phase value φ of a message of the form 〈∗, φ, ∗, ∗〉 requires
more than n+f

2 messages of the form 〈∗, φ − 1, ∗, ∗〉 to be
considered valid (lines 1-3).

7

Algorithm 2: Semantic validation procedure
Input: Incoming message of the form 〈j, φj , vj , statusj〉
Output: A boolean value indicating if the message is valid

// phase value

1 if not |{〈∗, φ, ∗, ∗〉 ∈ Vi : φ = φj − 1}| > n+f
2

then
2 return false;
3 end
// proposal value

4 if φj (mod 3) = 2 then
5 if not |{〈∗, φ, v, ∗〉 ∈ Vi : φ = φj − 1 ∧ v = vj}| > n+f

2
/2 then

6 return false;
7 end
8 else if φj (mod 3) = 0 then
9 if vj ∈ {0, 1} then

10 if not |{〈∗, φ, v, ∗〉 ∈ Vi : φ = φj − 1 ∧ v = vj}| > n+f
2

then
11 return false;
12 end
13 else if vj = ⊥ then
14 if not |{〈∗, φ, v, ∗〉 ∈ Vi : φ = φj − 2∧ v = 0}| > n+f

2
/2 then

15 return false;
16 end
17 if not |{〈∗, φ, v, ∗〉 ∈ Vi : φ = φj − 2∧ v = 1}| > n+f

2
/2 then

18 return false;
19 end
20 end
21 else if φj (mod 3) = 1 ∧ φj > 1 then
22 if not |{〈∗, φ, v, ∗〉 ∈ Vi : φ = φj − 2 ∧ v = vj}| > n+f

2

23 and not |{〈∗, φ, v, ∗〉 ∈ Vi : φ = φj − 1 ∧ v = ⊥}| > n+f
2

then
24 return false;
25 end
26 end

// status value
27 if φj ≤ 3 then
28 if not statusj = undecided then
29 return false;
30 end
31 else
32 if statusj = decided then
33 if not |{〈∗, φ, v, ∗〉 ∈ Vi : φ (mod 3) = 0 ∧ v = vj}| > n+f

2
then

34 return false;
35 end
36 else
37 if not |{〈∗, φ, v, ∗〉 ∈ Vi : φ is the highest φ such that φ

(mod 3) = 2 ∧ φ < φj ∧ v = 0}| > n+f
2
/2 then

38 return false;
39 end
40 if not |{〈∗, φ, v, ∗〉 ∈ Vi : φ is the highest φ such that φ

(mod 3) = 2 ∧ φ < φj ∧ v = 1}| > n+f
2
/2 then

41 return false;
42 end
43 end
44 end
45 return true;

5.2.2 Proposal value
The validation of the proposal value varies according to the
phase carried in the message. Messages with phase value
φ = 1 are the only that do not require validation and are
immediately accepted.
• Messages with phase φ (mod 3) = 2: The proposal value
v is valid if there are more than (n+f

2)/2 messages with
phase φ− 1 and proposal value v (lines 4-7).

• Messages with phase φ (mod 3) = 0: If the proposal
value is v ∈ {0, 1}, then it requires more than n+f

2
messages with phase φ − 1 and proposal value v. If the

proposal value is ⊥, then it requires more than (n+f
2)/2

messages of the form 〈∗, φ − 2, 0, ∗〉 and more than
(n+f

2)/2 messages of the form 〈∗, φ − 2, 1, ∗〉 (lines 8-
20).

• Messages with phase φ (mod 3) = 1: The validity of
proposal value v in these messages depends if it was
obtained deterministically (Line 33) or randomly (Line
35). If obtained deterministically, it requires more than
n+f
2 messages of the form 〈∗, φ−2, v, ∗〉. If set randomly,

then it requires more than n+f
2 messages of the form

〈∗, φ− 1,⊥, ∗〉 (lines 21-25).

5.2.3 Status value
For the status variable, any message with phase φ ≤ 3 must
necessarily carry value undecided because no node can decide
prior to phase 3 (lines 27-30). For messages with φ > 3,
a status = decided (and value v) requires more than n+f

2
messages of the form 〈∗, φ, v, ∗〉 where φ (mod 3) = 0. A
status = undecided requires more than (n+f

2)/2 messages of
the form 〈∗, φ′, 0, ∗〉 and more than (n+f

2)/2 messages of the
form 〈∗, φ′, 1, ∗〉, where φ′ must be the highest φ′ (mod 3) =
2 lower than φ (lines 37-42).

6 PERFORMANCE EVALUATION

This section analyzes the performance of Turquois in 802.11b
wireless ad hoc networks under both a real-world network
testbed and a simulation environment. It is composed by two
main sections.

Section 6.1 compares primarily the performance of Turquois
against the Bracha’s and ABBA protocols. The protocols are
executed in the Emulab platform [48], on a testbed composed
of up to 16 rack-mounted and Wi-Fi enabled hosts. Like
Turquois, both Bracha’s and ABBA protocols are leader-free
randomized algorithms that achieve optimal resilience on the
number of Byzantine nodes. Unlike our protocol, they were not
designed with a wireless environment in mind, and employ the
typical asynchronous model with reliable point-to-point links.

These protocols were chosen essentially because they are
leader-free, a characteristic we deem fundamental for wireless
ad hoc networks. While there are faster protocols in the
literature (e.g., BFT [31], Fast Byzantine Paxos [32]), their
liveness is only guaranteed when there is a unique correct
leader, all correct nodes agree on its identity, and the leader can
communicate in a timely manner with sufficiently many nodes.
These conditions are too strong for a wireless ad hoc network.
This is specially true if the environment is considered hostile -
an implicit assumption when there are Byzantine failures - and
some omission failures can be caused by a malicious attacker.
For instance, suppose this attacker has just enough power to
jam the communication of a single node. With a leader-based
protocol, the attacker can follow a strategy of chasing the
designated leader, severely thwarting the protocol execution.
For this reason, we considered only leader-free protocols for
evaluation.

The protocol of Bracha does not resort to any kind of cryp-
tographic operations, apart from a computationally efficient
hash function to authenticate the point-to-point channels, but

8

requires many message exchanges (in complexity order of
O(n3)), and the expected worst-case number of rounds to
terminate is O(2n). The ABBA protocol, on the other hand,
has message complexity of O(n2) and terminates in a constant
expected number of steps (at most two rounds of three steps
each), but relies heavily on expensive public-key cryptography.

Section 6.2 analyzes the performance of Turquois in the
ns-3 network simulator [49] and evaluates the impact of
several additional parameters - not possible to evaluate under
the experimental setting of the previous section - such as a
significantly higher number of nodes.

6.1 Protocol Comparison in Emulab
This section evaluates the latency of the Turquois, Bracha’s
and ABBA protocols under several parameters such as the
number of nodes, types of faults in the system, and distribution
of the initial proposal values. Other aspects such as the clock
tick mechanism of Turquois and the impact of its message
authentication mechanism are also evaluated.

6.1.1 Testbed and Implementation
The experiments were carried out on the Emulab testbed [48].
A total of 16 nodes were used, each one with the following
hardware characteristics: Pentium III CPU, 600 MHz of clock
speed, 256 MB of RAM, and 802.11 a/b/g D-Link DWL-
AG530 WLAN interface card. The operating system was the
Fedora Core 4 Linux with kernel version 2.6.18.6. The nodes
were located on the same physical cluster and were, at most,
a few meters distant from each other.

All the protocols were implemented in C. In Turquois,
nodes communicate using UDP broadcast. A local clock tick is
triggered if one of the following conditions is true: (1) 10 ms
have passed since the last broadcast, or (2) the phase value
was changed. In both Bracha’s and ABBA, the nodes use
TCP to communicate because of their requirement of reliable
point-to-point links. While the reliable point-to-point links do
not have to necessarily be implemented as TCP channels, we
use TCP for both the convenience and the maturity of the
protocol. Bracha’s protocol requires authenticated channels.
To this end, we use the IPSec Authentication Header with
security associations being established between every pair of
nodes before the execution of the protocol. Both Turquois
and ABBA employ their own authentication mechanisms. For
these protocols, the cryptographic keys were generated and
distributed before the execution of the protocols.

6.1.2 Methodology
The performance metric utilized in the experiments is the
latency. This metric is always relative to a particular node pi,
and it is denoted as the interval of time between the moment
pi proposes a value to a consensus execution, and the moment
pi decides.

The average latency for the whole set of nodes is obtained
in the following manner. A signaling machine, which does
not participate in the execution of the protocols, is selected
to coordinate the experiment. It broadcasts a 1-byte UDP
message to the n nodes involved in the experiment. When a

node receives such a message, it starts a consensus execution.
Nodes record the latency value as described above, and send a
1-byte UDP message to the signaling machine indicating the
termination of the execution of the protocol. The signaling
machine, upon receiving n such messages, waits five seconds,
and recommences the procedure. The average latency is
obtained by repeating this procedure 50 times, and then by
averaging the latencies collected by all nodes. The confidence
interval for the average latency is calculated for a confidence
level of 95%.

The experiments were carried out for combinations of group
size, proposal distribution, and fault load. The group size
defines the number of nodes in the system. In our experiments,
the values are 4, 7, 10, 13, and 16 nodes. The proposal distri-
bution defines the initial values to be proposed by the nodes.
In the unanimous proposal distribution all nodes propose the
same initial value 1. In the divergent distribution nodes with
an odd node identifier propose 1, while the others propose
0. The fault load defines the type of faults that are injected
in the system. In the failure-free fault load, all nodes behave
correctly. The fail-stop fault load makes f = bn−13 c nodes
crash before the measurements are initiated. In the Byzantine
fault load, f = bn−13 c nodes try to keep the correct nodes
from reaching a decision by attacking the execution of the
protocol. This is accomplished as follows. In both Bracha’s
and Turquois, a Byzantine node in phase 1 and 2 proposes
the opposite value that it would propose if it were behaving
correctly, and in phase 3 it proposes the default value ⊥.
This strategy is followed even if messages are potentially
considered invalid. In ABBA, since the protocol terminates
in a constant number of steps, a Byzantine node does not
have much room to delay the execution of the protocol by
proposing incorrect values. Instead, it transmits messages with
invalid signatures and justifications in order to force extra
computations at the correct nodes. Finally, the value of the
parameter k in Turquois is set to k = n− f in all fault loads,
with f = bn−13 c.

6.1.3 Failure-free fault load
Table 1 and Figure 1 show the average latency for every
tested combination of group size and proposal distribution, in
executions without node failures. By observing the results, it
becomes apparent that Turquois performs significantly better
than the other two protocols. The difference becomes wider
as the number of nodes increases, exceeding an order of
magnitude in some cases.

The performance of Turquois stems naturally from its
design. Two fundamental reasons contribute to its efficiency.
First, the use of UDP broadcast takes full advantage of
the shared communication medium. This was only possible
because the protocol is able to tolerate dynamic transmission
faults. Second, the use of a novel hash-based signature scheme
for message validation allows for computational efficiency.
The impact of these features is clearly reflected in the results.

Bracha’s protocol is the worst contender, showing serious
performance degradation due to the O(n3) message com-
plexity. In addition to being a shared medium, wireless ad
hoc networks are restricted in their speed and capacity, and,

9

Average Latency ± Confidence Interval (ms)
Group Turquois ABBA Bracha
Size unanimous divergent unanimous divergent unanimous divergent
n = 4 14.90± 4.74 28.67± 9.99 74.70± 7.93 135.39± 28.04 101.06± 8.15 127.39± 22.99
n = 7 26.85± 6.18 54.38± 12.20 125.81± 6.22 253.66± 37.93 552.77± 31.36 715.15± 112.90
n = 10 43.15± 10.05 71.75± 25.05 277.90± 12.47 547.42± 81.94 1361.90± 33.17 2282.23± 315.53
n = 13 60.94± 14.15 128.07± 42.51 693.39± 103.45 1722.44± 295.05 3459.10± 100.34 6276.91± 734.11
n = 16 87.57± 22.34 236.31± 77.27 1914.54± 283.18 4309.51± 750.20 7321.41± 110.69 10420.00± 2640.11

Table 1
Average latency and confidence interval in a 802.11b network with no node failures (latency in milliseconds and

confidence level of 95%).

8 

16 

32 

64 

128 

256 

512 

1024 

2048 

4096 

8192 

16384 

4  7  10  13  16 

Av
er
a 
ge
 L
at
en

cy
 (m

s)
 

Group Size (processes) 

Turquois (uniform)  Bracha (uniform)  ABBA (uniform) 

Turquois (divergent)  Bracha (divergent)  ABBA (divergent) 

Figure 1. Average latency in a 802.11b network with no
node failures (logarithmic scale of base 2).

therefore, a higher number of message transmissions is bound
to have a severe cost. The ABBA protocol performs better
than Bracha’s, but still much worse than Turquois. Despite
its O(n2) message complexity, the fact that, like Bracha’s, it
still requires the use of TCP channels combined with heavy
cryptography proves to be too much of a burden.

The relative difference between proposal distributions was
approximately the same across all protocols, with the latency
roughly doubling from an unanimous to a divergent proposal
distribution. The reason for this is that when nodes propose
different values, the protocols usually need to execute for an
additional cycle of steps. For example, in Turquois, nodes
decide by the end of phase 3 with unanimous proposals, but
with divergent proposals they typically decide by the end of
phase 6. Under the divergent scenario, the first cycle of steps
is usually not enough for nodes to decide, but is sufficient
for a significant number of them to converge into the same
proposal value, which leads to a decision by the end of the
following cycle.

6.1.4 Fail-stop fault load
Table 2 and Figure 2 show the performance of the protocols
when f = bn−13 c nodes crash before the execution of the pro-
tocols begins. Two observations are clear from these results.
First, for all three protocols, there is practically no difference
between the two proposal distributions. Since f nodes crash,
for every group size tested, exactly n− f = bn+f

2 c+ 1 nodes
are left in the system. This means that, as the nodes make
progress, they necessarily have to receive the same set of

messages. Thus, never diverging in their proposal values after
the first phase.

8 

16 

32 

64 

128 

256 

512 

1024 

2048 

4096 

8192 

4  7  10  13  16 

Av
er
a 
ge
 L
at
en

cy
 (m

s)
 

Group Size (processes) 

Turquois (uniform)  Bracha (uniform)  ABBA (uniform) 

Turquois (divergent)  Bracha (divergent)  ABBA (divergent) 

Figure 2. Average latency in a 802.11b network with fail-
stop node failures (logarithmic scale of base 2).

The second observation is that, for the unanimous proposal
distribution, in most cases the performance of the protocols
is worse in the fail-stop scenario than in the fault-free ex-
periments. At a first glance this result seems counterintuitive
because when some nodes crash there is less contention on
the network and, in principle, the protocols can run faster. The
problem is that protocols become more sensitive to message
loss when only n− f nodes are present in the system. More
retransmissions are needed to ensure that nodes receive enough
messages to make progress. Turquois is particularly sensitive
to this fact. There are two reasons that explain this: (1) since
Turquois uses UDP broadcast, a single collision can result
in up to n − 1 nodes not receiving a message, while in
the protocols that employ TCP one collision results in just
one node not receiving the message; (2) furthermore, the
timeout mechanism in the current implementation of Turquois
is crude when comparing to the sophistication of TCP, and
is not adaptable to network conditions nor to the number
of nodes involved in the communication. This also explains
its proportionally wider confidence interval. An optimization
of the retransmission mechanism could significantly improve
the performance of Turquois in these scenarios. Nevertheless,
Turquois still performs significantly better than the other two
protocols with this fault load.

There are two exceptions to the observation that protocols
perform better in the failure-free fault load when compared
with the fail-stop fault load. They occur in Bracha’s and ABBA

10

Average Latency ± Confidence Interval (ms)
Group Turquois ABBA Bracha
Size unanimous divergent unanimous divergent unanimous divergent
n = 4 42.26± 30.29 43.84± 31.27 77.31± 9.17 77.88± 9.34 99.29± 3.05 99.61± 3.17
n = 7 106.28± 37.98 110.18± 22.00 183.20± 15.96 169.90± 6.18 516.26± 26.70 519.76± 37.63
n = 10 168.45± 39.46 188.95± 35.05 310.97± 15.61 335.93± 24.09 2488.75± 52.53 2619.35± 75.43
n = 13 375.00± 56.03 387.22± 60.06 747.56± 44.77 771.68± 52.71 5992.63± 143.00 6267.88± 355.51
n = 16 395.96± 55.11 422.65± 82.41 1180.03± 109.18 1284.83± 103.64 6362.68± 136.64 6469.38± 159.40

Table 2
Average latency and confidence interval in a 802.11b network with fail-stop node failures (latency in milliseconds and

confidence level of 95%).

when n = 16. This indicates that there may be a turning point
where the group size becomes more stringent to performance
than sensitivity to message loss, although experiments with
higher numbers of nodes would be necessary to confirm this.

6.1.5 Byzantine fault load

Table 3 and Figure 3 show the performance of the protocols
when f = bn−13 c nodes act according to a malicious strategy.
It is interesting to note that the relative difference between
the unanimous and divergent proposal distributions is similar
to the scenario with no node failures, with the latency very
roughly doubling in the divergent distribution. Like in the
failure-free scenario, this is due to divergent proposal values
forcing nodes to execute for extra rounds to reach a decision.

8 

32 

128 

512 

2048 

8192 

32768 

4  7  10  13  16 

Av
er
a 
ge
 L
at
en

cy
 (m

s)
 

Group Size (processes) 

Turquois (uniform)  Bracha (uniform)  ABBA (uniform) 

Turquois (divergent)  Bracha (divergent)  ABBA (divergent) 

Figure 3. Average latency in a 802.11b network with
Byzantine node failures (logarithmic scale of base 2).

When compared directly to the failure-free scenario, this
fault load suffers from a performance degradation that be-
comes increasingly noticeable with a higher group size, spe-
cially with a divergent proposal distribution. The reason for
this is that many messages broadcast by Byzantine nodes
carry values that fail to pass the validation mechanisms of the
protocols. The result is that, similarly to the fail-stop scenario,
protocols become sensitive to message loss with the added
burden of a higher contention (with n nodes broadcasting
messages). As for Turquois, despite its non-optimized timeout
mechanism making it more sensitive to this issue, it is still the
faster protocol.

6.1.6 Timeout Mechanism of Turquois
Under the experiments carried out so far, Turquois employed
a constant local clock tick value of 10 ms. Here we analyze
how an optimized local clock tick can impact the performance
of the protocol. To this end, Turquois was executed with a
variable number of nodes - 4 to 16 - and local clock tick
value - 2, 5, 10, 20, 50, and 100 ms. Every other parameter
was fixed. The protocol was run in a 802.11b network with the
failure-free fault load and a unanimous proposal distribution.

0!
20!
40!
60!
80!

100!
120!
140!
160!
180!
200!

2 ms ! 5 ms! 10 ms! 20 ms! 50 ms! 100 ms!

Av
er

ag
e

La
te

nc
y

(m
s)
!

Timeout Value!

n = 4! n = 7! n = 10! n = 13! n = 16!

Figure 4. Average latency in a 802.11b network with
varying timeout value.

The graph from Figure 4 shows how the latency of the
protocol can be affected by the local clock tick value. As it can
be observed, a poorly chosen timeout value can severely impair
the performance. A low timeout value can be particularly
harmful. It generates too much contention in the network,
which results in considerable message loss, severely degrading
performance. It can also be observed that as the number of
nodes increases, the optimal timeout value tends to be higher in
order to alleviate the contention created by having extra nodes
in the system. These observations indicate that Turquois and
other protocol sharing a similar structure could benefit from
having an adaptive timeout that self-adjusts in reaction to the
network conditions. Some of the authors are currently involved
in ongoing investigation regarding this possibility [50].

6.1.7 Cryptography
A key aspect for the performance of Turquois is the novel
message authentication it employs. This section measures the
impact of our hash-bashed signature mechanism as compared
to classical RSA signatures. Figure 5 compares the perfor-
mance of Turquois using the hash-bashed message authentica-
tion mechanism of Section 5 with the alternative of employing

11

Average Latency ± Confidence Interval (ms)
Group Turquois ABBA Bracha
Size unanimous divergent unanimous divergent unanimous divergent
n = 4 44.74± 30.16 80.18± 33.93 87.65± 22.38 197.78± 25.25 111.16± 6.99 248.66± 38.80
n = 7 96.20± 37.88 186.74± 60.54 198.69± 17.72 361.53± 48.41 619.09± 23.40 1634.17± 236.21
n = 10 145.22± 23.21 288.94± 64.04 481.83± 31.10 1137.94± 37.78 2216.42± 54.17 5633.47± 668.64
n = 13 386.39± 38.57 719.79± 72.57 1573.46± 110.70 3276.53± 211.76 5445.93± 114.10 12656.41± 1572.59
n = 16 590.95± 76.14 904.27± 83.48 2940.68± 426.93 6045.06± 533.52 7698.29± 180.10 20412.36± 2271.55

Table 3
Average latency and confidence interval in a 802.11b network with Byzantine node failures (latency in milliseconds

and confidence level of 95%).

instead RSA signatures of 1024, 2048, and 4096 bits in length.
For this experiment, the protocol was executed in 802.11b
network with the failure-free fault load and a unanimous
proposal distribution.

8!

16!

32!

64!

128!

256!

512!

1024!

4! 7! 10! 13! 16!

Av
er

ag
e

La
te

nc
y

(m
s)
!

Group Size (nodes)!

RSA-1024! RSA-2048! RSA-4096! hash-based (RIPEMD160)!

Figure 5. Average latency in a 802.11b network with RSA
and hash-based message authentication mechanisms
(logarithmic scale of base 2).

From the graph, it can be observed that Turquois benefits
immensely from the hash-based authentication mechanism. It
is important to establish that an increase in group size does
not translate to the generation of more signatures by each node
(each node generates exactly one signature per communication
round regardless of the group size). It does, however, imply
the verification of more signatures, but verification is at least
an order of magnitude faster than generation. The fact that
the curves for the RSA-based executions grow little with
the group size is an indicator that the bottleneck lies more
with the computation and less with the communication. This
justifies the employment of efficient cryptographic techniques,
specially because it significantly improves performance with
practical group sizes.

6.2 Simulation
This section analyzes the performance of Turquois in the ns-3
network simulator [49]. It tests Turquois under some additional
parameters that could not be captured by the Emulab testbed,
such as a higher number of nodes - up to 100 - and the physical
distribution of the nodes. More specifically, this section (1)
complements the previous analysis of how the timeout value
affects performance, and (2) it evaluates Turquois considering
the physical distribution of the nodes. Every experiment is
carried out in a simulated 802.11b ad-hoc network with a
failure-free fault load and unanimous value proposals.

6.2.1 Timeout Value
Figures 6 and 7 plot the average latency and average rounds
to termination of Turquois as a function of the timeout value.
Figure 6 shows the curves for 4, 10, and 25 nodes, and Figure 7
show the curves for 50, 75, and 100 nodes.

0!
10!
20!
30!
40!
50!
60!
70!
80!
90!

100!
110!
120!
130!

3! 6! 9! 12
!

15
!

18
!

21
!

24
!

27
!

30
!

33
!

36
!

39
!

42
!

45
!

48
!

51
!

54
!

57
!

60
!

63
!

66
!

69
!

72
!

75
!

78
!

81
!

84
!

87
!

90
!

93
!

96
!

99
!

Av
er

ag
e

La
te

nc
y

(m
s)
!

Timeout Value (ms)!

n = 4! n = 10! n = 25!

Figure 6. Average latency of Turquois with varying time-
out value for 4, 10, and 25 nodes.

0!

500!

1000!

1500!

2000!

2500!

3000!

3500!

3! 6! 9! 12
!

15
!

18
!

21
!

24
!

27
!

30
!

33
!

36
!

39
!

42
!

45
!

48
!

51
!

54
!

57
!

60
!

63
!

66
!

69
!

72
!

75
!

78
!

81
!

84
!

87
!

90
!

93
!

96
!

99
!

Av
er

ag
e

La
te

nc
y

(m
s)
!

Timeout Value (ms)!

n = 50! n = 75! n = 100!

Figure 7. Average latency of Turquois with varying time-
out value for 50, 75, and 100 nodes.

The results obtained via simulation are congruent with the
observed trend of the experimental evaluation of Section 6.1.6.
A relatively low timeout value generates too much contention,
which significantly affects performance. As the timeout value
increases, the performance becomes better until it reaches a
sweet spot (which seems to be roughly around n ms). After
that, the latency increases linearly with the timeout value. This
pattern is clearly observable with n = 25 and, to a lesser
extent, with n = 10. With n = 4, the number of nodes is
too low to cause any significant contention, even with very
low timeout values. With n = 50, n = 75, and n = 100, it
can only be observed the latency approaching its sweet spot

12

(actually, in n = 50, it can still be observed an increase in
latency towards the higher timeout values, but very slightly).
Notice that the curves begin being drawn for a progressively
higher timeout value with increasing n. For example, with
n = 50 the curve only starts at timeout = 19, with n = 75
it starts at timeout = 21, and with n = 100 at timeout =
31. This is because with lower timeout values the contention
generated was so much that the algorithm did not terminate
in a reasonable number of steps (i.e., within 1000 rounds).

6.2.2 Node Density

This section analyzes the performance of Turquois by varying
the node density (i.e., the physical area for a given number
of nodes). For this simulation, the nodes were uniformly
distributed within a disc of varying radius - 10, 90, and 130
meters. Figure 8 plots the average number of rounds until
termination and Figure 9 plots the average percentage of nodes
that a node is connected4 to, which we call the average node
connectivity.

The first observation is that the number of rounds increases
linearly with the number of nodes. The second is that the
number of rounds also increases with higher disc radius. The
latter exposes a tradeoff between performance and connectivity
and shows the practical tolerance of the protocol to reduced
connectivity, i.e., the algorithm can still terminate with an aver-
age connectivity that implies more transmission failures than
those admitted by the liveness threshold. For example, with
n = 100, the assumed parameters were f = 0 (we assumed
no node failures) and k = 67. This gives σ ≤ 1715. According
to Figure 9, for n = 100, the average connectivity was slightly
less than 0.75. This means that, on each communication round,
at least 25% of the system messages were lost, yielding a total
count of at least 0.25n2 = 2500 omission failures per round,
which is considerably higher than σ. These results are in no
way contradictory with the liveness threshold. While a number
of omissions equal or below σ guarantees progress, this does
not imply that every omission pattern above σ must block the
progress of the protocol. In practice, many of these patterns
are benign and still allow for the protocol to make progress.

0!

10!

20!

30!

40!

50!

60!

70!

80!

4! 7! 10
!

13
!

16
!

19
!

22
!

25
!

28
!

31
!

34
!

37
!

40
!

43
!

46
!

49
!

52
!

55
!

58
!

61
!

64
!

67
!

70
!

73
!

76
!

79
!

82
!

85
!

88
!

91
!

94
!

97
!

10
0!

Av
er

ag
e

R
ou

nd
s!

Group Size (nodes)!

R = 10 m! R = 90 m! R = 130!

Figure 8. Average Rounds of Turquois with disc radius of
10, 90, and 130 meters.

4. We consider a node pi to be connected to another node pj for an
execution of the protocol if, during that execution, pi receives some message
from pj . This relationship is not symmetric.

0.5!

0.55!

0.6!

0.65!

0.7!

0.75!

0.8!

0.85!

0.9!

0.95!

1!

4! 7! 10
!

13
!

16
!

19
!

22
!

25
!

28
!

31
!

34
!

37
!

40
!

43
!

46
!

49
!

52
!

55
!

58
!

61
!

64
!

67
!

70
!

73
!

76
!

79
!

82
!

85
!

88
!

91
!

94
!

97
!

10
0!Av

g.
 C

on
ne

ct
iv

ity
 (p

er
ce

nt
ag

e
of

 n
od

es
)!

Group Size (nodes)!

R = 10 m! R = 90 m! R = 130 m!

Figure 9. Average Node Connectivity of Turquois with
disc radius of 10, 90, and 130 meters.

7 CONCLUSIONS

The paper presented Turquois, an Byzantine fault-tolerant
binary consensus protocol specifically designed for wireless
ad-hoc networks. Its design takes into account the typically
constrained resources of wireless ad-hoc environments, while
aiming for optimal resilience parameters. The protocol tol-
erates f < n

3 Byzantine nodes. Furthermore, it assumes
communication to be inherently unreliable by incorporating
the communication failure model [7]. Safety is maintained
despite unrestricted message omissions, and liveness is ensured
in rounds where the number of omissions is bounded by
σ ≤ dn−t2 e(n − k − t) + k − 2, where k is the number of
nodes required to decide, and t ≤ f is the number of nodes
that are actually faulty. The timing assumptions are also very
weak, requiring only a local timeout on each node to ensure
these keep sending messages.

The key to its performance was the decision to assume
unreliable communication, which allows the protocol to take
full advantage of the broadcasting medium, where the cost
of transmitting a message to multiple nodes can be just the
same of sending it to a single one. Furthermore, the protocol
avoids the use of public-key cryptography during its normal
operation in order to preserve the computational power of
mobile nodes, which is usually limited. The protocol was
subject to a comparative performance evaluation against two
well-known intrusion-tolerant consensus protocols. The results
showed that, regardless of the type of faults present in the
system, Turquois significantly outperforms the other protocols,
in particular as the number of nodes in the system increases.

REFERENCES
[1] A. Clementi, A. Monti, and R. Silvestri, “Selective families, super-

imposed codes, and broadcasting on unknown radio networks,” in
Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete
Algorithms, 2001, pp. 709–718.

[2] D. R. Kowalski, “On selection problem in radio networks,” in Pro-
ceedings of the 24th ACM Symposium on Principles of Distributed
Computing, 2005, pp. 158–166.

[3] J. A. Misener, R. Sengupta, and H. Krishnan, “Cooperative collision
warning: Enabling crash avoidance with wireless technology,” in 12th
World Congress on ITS, 2005.

[4] H. Moniz, A. Tedeschi, N. F. Neves, and M. Correia, “A distributed
systems approach to airborne self-separation,” in Computational Models,
Software Engineering and Advanced Technologies in Air Transportation,
L. Weigang, A. Barros, and I. Oliveira, Eds. IGI Global, 2009.

[5] M. D. Brown, “Air traffic control using virtual stationary automata,”
Master’s thesis, Massachusetts Institute of Technology, 2007.

13

[6] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” Journal of the ACM,
vol. 32, no. 2, pp. 374–382, 1985.

[7] N. Santoro and P. Widmeyer, “Time is not a healer,” in Proceedings of
the 6th Symposium on Theoretical Aspects of Computer Science, 1989,
pp. 304–313.

[8] A. Bessani, P. Sousa, M. Correia, N. F. Neves, and P. Verı́ssimo, “The
CRUTIAL way of critical infrastructure protection,” IEEE Security and
Privacy, vol. 6, no. 6, pp. 44–51, 2008.

[9] M. K. Reiter, “The Rampart toolkit for building high-integrity services,”
in Theory and Practice in Distributed Systems. Springer-Verlag, 1995,
vol. 938, pp. 99–110.

[10] A. Vahdat and D. Becker, “Epidemic routing for partially-connected ad
hoc networks,” Duke University, Tech. Rep. CS-2000-06, 2000.

[11] B. Awerbuch, D. Holmer, C. Nita-Rotaru, and H. Rubens, “An on-
demand secure routing protocol resilient to byzantine failures,” in
Proceedings of the 1st ACM workshop on wireless security, 2002, pp.
21–30.

[12] C. Koo, “Broadcast in radio networks tolerating Byzantine adversarial
behavior,” in Proceedings of the 23rd Annual ACM Symposium on
Principles of Distributed Computing, 2004, pp. 275–282.

[13] A. Pelc and D. Peleg, “Broadcasting with locally bounded byzantine
faults,” Information Processing Letters, vol. 93, no. 3, pp. 109–115,
2005.

[14] V. Drabkin, R. Friedman, and M. Segal, “Efficient byzantine broadcast
in wireless ad-hoc networks,” in Proceedings of the International Con-
ference on Dependable Systems and Networks, 2005, pp. 160–169.

[15] V. Bhandari and N. Vaidya, “On reliable broadcast in a radio network,”
in Proceedings of the 24th ACM Symposium on Principles of Distributed
Computing, 2005, pp. 138–147.

[16] C.-Y. Koo, V. Bhandari, J. Katz, and N. H. Vaidya, “Reliable broadcast
in radio networks: the bounded collision case,” in Proceedings of the
25th annual ACM symposium on Principles of distributed computing.
ACM, 2006, pp. 258–264.

[17] N. Badache, M. Hurfin, and R. Macedo, “Solving the consensus problem
in a mobile environment,” in Proceedings of the 18th IEEE International
Performance, Computing, and Communications Conference, 1999, pp.
29–35.

[18] T. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” Journal of the ACM, vol. 43, no. 2, pp. 225–267,
1996.

[19] H. Seba, N. Badache, and A. Bouabdallah, “Solving the consensus prob-
lem in a dynamic group: an approach suitable for a mobile environment,”
in Proceedings of the 7th IEEE International Symposium on Computers
and Communications, 2002, pp. 327–332.

[20] W. Wu, J. Cao, J. Yang, and M. Raynal, “Design and performance
evaluation of efficient consensus protocols for mobile ad hoc networks,”
IEEE Transactions on Computers, vol. 56, no. 8, pp. 1055–1070, August
2007.

[21] E. Vollset and P. D. Ezhilchelvan, “Design and performance-study of
crash-tolerant protocols for broadcasting and reaching consensus in
MANETs,” in Proceedings of the 24th IEEE Symposium on Reliable
Distributed Systems, 2005, pp. 166–175.

[22] N. Santoro and P. Widmayer, “Agreement in synchronous networks with
ubiquitous faults,” Theoretical Computer Science, vol. 384, no. 2-3, pp.
232–249, 2007.

[23] G. Chockler, M. Demirbas, S. Gilbert, C. Newport, and T. Nolte,
“Consensus and collision detectors in wireless ad hoc networks,” in
Proceedings of the 24th ACM Symposium on Principles of Distributed
Computing, 2005.

[24] F. Borran, R. Prakash, and A. Schiper, “Extending Paxos/LastVoting
with an adequate communication layer for wireless ad hoc networks,”
in Proceedings of the 27th IEEE International Symposium on Reliable
Distributed Systems, 2008, pp. 227–236.

[25] B. Charron-Bost and A. Schiper, “The heard-of model: Computing
in distributed systems with benign failures,” Distributed Computing,
vol. 22, no. 1, pp. 49–71, 2009.

[26] L. Lamport, “The part-time parliament,” ACM Transactions on Computer
Systems, vol. 16, no. 2, pp. 133–169, 1998.

[27] M. Biely, J. Widder, B. Charron-Bost, A. Gaillard, M. Hutle, and
A. Schiper, “Tolerating corrupted communication,” in Proceedings of
the 26th ACM Symposium on Principles of Distributed Computing, 2007,
pp. 244–253.

[28] U. Schmid, B. Weiss, and I. Keidar, “Impossibility results and lower
bounds for consensus under link failures,” SIAM Journal on Computing,
vol. 38, no. 5, pp. 1912–1951, 2009.

[29] H. Moniz, N. F. Neves, M. Correia, and P. Verı́ssimo, “Randomization
can be a healer: Consensus with dynamic omission failures,” in Proceed-
ings of the 23rd International Symposium on Distributed Computing,
2009, pp. 63–77.

[30] R. Boichat, P. Dutta, S. Frolund, and R. Guerraoui, “Deconstructing
paxos,” SIGACT News, vol. 34, no. 1, pp. 47–67, March 2003.

[31] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in
Proceedings of the Third Symposium on Operating Systems Design and
Implementation, 1999, pp. 173–186.

[32] J. P. Martin and L. Alvisi, “Fast byzantine consensus,” IEEE Transac-
tions on Dependable and Secure Computing, vol. 3, no. 3, pp. 202–215,
2006.

[33] F. Borran and A. Schiper, “A leader-free Byzantine consensus algo-
rithm,” in Proceedings of the 11th International Conference on Dis-
tributed Computing and Networking, 2010, pp. 67–78.

[34] L. Lamport and J. Gray, “Consensus on transaction commit,” ACM
Transactions on Database Systems, vol. 31, no. 1, pp. 133–160, 2006.

[35] V. Hadzilacos and S. Toueg, “Fault-tolerant broadcasts and related
problems,” in Distributed Systems, S. Mullender, Ed. ACM Press /
Addison-Wesley, 1993, ch. 5, pp. 97–146.

[36] M. Correia, N. F. Neves, and P. Verı́ssimo, “From consensus to atomic
broadcast: Time-free Byzantine-resistant protocols without signatures,”
Computer Journal, vol. 41, no. 1, pp. 82–96, Jan. 2006.

[37] J. Zhang and W. Chen, “Implementing uniform reliable broadcast
with binary consensus in systems with fair-lossy links,” Information
Processing Letters, vol. 110, no. 1, pp. 13–19, 2009.

[38] H. Moniz, N. F. Neves, M. Correia, and P. Verı́ssimo, “RITAS: Services
for randomized intrusion tolerance,” IEEE Transactions on Dependable
and Secure Computing, vol. 8, no. 1, pp. 122–136, 2011.

[39] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in Constantino-
ple: Practical asynchronous Byzantine agreement using cryptography,”
in Proceedings of the 19th ACM Symposium on Principles of Distributed
Computing, Jul. 2000, pp. 123–132.

[40] R. Guerraoui and A. Schiper, “The generic consensus service,” IEEE
Transactions on Software Engineering, vol. 27, no. 1, pp. 29–41, 2001.

[41] M. O. Rabin, “Randomized Byzantine generals,” in Proceedings of the
24th Annual IEEE Symposium on Foundations of Computer Science,
1983, pp. 403–409.

[42] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in Constantino-
ple: Practical asynchronous Byzantine agreement using cryptography,”
Journal of Cryptology, vol. 18, no. 3, pp. 219–246, 2005.

[43] M. Ben-Or, “Another advantage of free choice: Completely asyn-
chronous agreement protocols,” in Proceedings of the 2nd ACM Sympo-
sium on Principles of Distributed Computing, 1983, pp. 27–30.

[44] G. Bracha, “An asynchronous b(n−1)/3c-resilient consensus protocol,”
in Proceedings of the 3rd ACM Symposium on Principles of Distributed
Computing, 1984, pp. 154–162.

[45] T. Srikanth and S. Toueg, “Simulating authenticated broadcasts to derive
simple fault-tolerant algorithms,” Distributed Computing, vol. 2, no. 2,
pp. 80–94, 1987.

[46] A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. CRC Press, 1997.

[47] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120–126, February 1978.

[48] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” in Proceedings of
the 5th Symposium on Operating Systems Design and Implementation,
2002, pp. 255–270.

[49] T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley, “ns-3 project
goals,” in Proceedings from the 2006 Workshop on ns-2: the IP Network
Simulator, 2006, p. 13.

[50] M. Dixit, H. Moniz, and A. Casimiro, “Timeout-based adaptive consen-
sus: improving performance through adaptation,” in Proceedings of the
27th Annual ACM Symposium on Applied Computing, 2012, pp. 492–
497.

Henrique Moniz obtained his PhD from the University of Lisbon in
2010. He spent two semesters at the same institution as an Invited
Assistant Professor and joined Microsoft Research in 2011 as a Post-
Doctoral Researcher. He is currently an associate researcher at INESC-
ID. His research interests lie in distributed systems and security. He has

14

contributions in the areas of fault tolerance, security, wireless and mobile
networks, and theory of distributed computing. Since joining Microsoft
Research he has become interested in data center architectures and
large-scale storage systems.

Nuno Neves is Associate Professor at the Department of Informatics,
Faculty of Sciences of the University of Lisboa. He is also a member
of the LaSIGE - Large Scale Informatic Systems Laboratory, and the
Navigators group, where he co-leads the fault and intrusion tolerance
research area. His main research interests are in distributed and parallel
systems, especially in the areas of security and dependability. Currently,
he is principal investigator at the MASSIF European project, and coordi-
nates the DIVERSE and SITAN national projects. In the past years, he
contributed to several other security-related projects at European level,
such as CRUTIAL, MAFTIA, and RESIST, and nationally, RITAS, AJECT
and COPE. His work has been recognized in several occasions, for
example with the IBM Scientific Prize and the William C. Carter award.
He currently has more than 75 international publications in journals and
conferences. He is on the editorial board of the International Journal
of Critical Computer-Based Systems, and has served on the program
committee of more than 50 conferences.

Miguel Correia is an Associate Professor at Instituto Superior Técnico
of the Universidade Técnica de Lisboa. He is a researcher at INESC-
ID, in the Distributed Systems Group. Until recently he was with the
University of Lisboa Faculty of Sciences, LASIGE and the Navigators.
He has a PhD in Computer Science from the University of Lisboa
Faculty of Sciences. He has been involved in several international and
national research projects related to intrusion tolerance and security,
including the TCLOUDS, MAFTIA and CRUTIAL EC-IST projects, and
the ReSIST NoE. He has more than 60 publications in international
journals, conferences and workshops. His main research interests are:
security, intrusion tolerance, distributed systems, distributed algorithms,
computer networks, cloud computing, and critical infrastructure protec-
tion.

