SPATIO: end-uSer Protection Against 10T
IntrusiOns

Gil Mouta, Miguel L. Pardal, Jodo Bota, Miguel Correia
Instituto Superior Técnico, Universidade de Lisboa, Portugal

Abstract—The Internet of Things (IoT) is an emerging technol-
ogy field where large numbers of physical objects communicate
between themselves using Internet technology. IoT solutions are
very diverse, ranging from simple toys to industrial applications.
There are currently billions of IoT devices connected to the
Internet, and this number has been growing exponentially in
the recent years. The large amount of data being generated from
the many devices in an IoT network makes it difficult to collect
and analyse all the data. However, with this growth there also
comes a growing security concern. With the use of IoT devices
in the industrial and healthcare sectors, for example, a security
incident can have far reaching consequences in the real world.
It is imperative to detect attacks as fast as possible, in time to
prevent significant damage.

The continuous flow of data may be handled with a stream
processing approach, a data processing paradigm in which high-
rate data sources are processed and generate results on-the-
fly. Based on this approach, we propose SPATIO (end-uSer
Protection Against ioT IntrusiOns), an anomaly detection system
designed for the IoT using machine learning to discover and
alert on anomalies happening in an IoT network but takes a fog
computing approach by using devices on the IoT network, such
as routers, to collect and transform network traffic into flow
metrics. Doing this transformation closer to the edge reduces
the bandwidth cost on the network and allows anonymization
of data before being sent outside the network, to the cloud or
a server running outlier detection algorithms to generate timely
alerts of network anomalies. We evaluate SPATIO by developing a
prototype testing it on an existing public dataset of IoT attacks.
We measured the accuracy of the machine learning approach,
reaching close to 80% detection rate in the best scenario, and
compared the performance of offloading work to gateway devices
in the IoT network versus a centralized approach, in which the
fog approach shows advantages in both network load as well as
attack detection latency.

I. INTRODUCTION

The Internet of Things (IoT) is one of the fastest growing
paradigms today. It consists of many objects of daily use
with embedded smart sensors and computational resources,
connected to the Internet. In 2018, there were 7 x 10° con-
nected IoT devices [1], and it is estimated that the number
of IoT devices will surpass the number of non-IoT active
device connections by 2020. With IoT becoming more per-
vasive, it becomes a target for malicious agents. According
to NETSCOUT’s Threat Intelligence Report [2], [oT devices
are attacked within 5 minutes of being plugged in, and
targeted by specific exploits in 24 hours, and a survey by the
Ponemon Insitute [3] in 2018 reveals that 21% of respondent
organizations had a cyber attack or data breach caused by an
unsecured IoT device in 2017.

IoT devices often present certain characteristics, such as
reduced dimensions, low energy consumption, limited network
(Internet) connection, limited processing and storage resources
and low cost. These characteristics help disseminate the IoT
paradigm to consumers, but they also make traditional security
tools less effective. For example, traditional cryptography is
harder to apply in IoT devices, due to the heavy use of
resources that such algorithms put on the device [4]. Another
aggravating factor in IoT security is the quantity of devices,
many of which are of different types, from sensors to actuators,
and from different vendors, highly increasing the chance that
at least one of these devices will have a vulnerability or be
misconfigured. Even if the IoT device being targeted is not
the target desired by the attacker, a compromised device can
act as a foothold on a network and allow it to launch more
attacks.

Intrusion Detection Systems (IDS) are a common compo-
nent of network security systems. They help discover, deter-
mine and identify unauthorized use, duplication, alteration and
destruction of information and information systems [5]. IDS
can monitor activity on the network, or run on individual
hosts or devices, using data collected locally about events
taking place, such as activity logs and system calls. They can
also employ different detection methods, such as recognizing
known attacks, or measuring the normal behavior of a device,
and labeling any behavior differing from it as anomalous.

While IDS are one of the primary tools used for protec-
tion of traditional networks and information systems, some
characteristics of the IoT make traditional IDS solutions inad-
equate [6]. The high number of small devices with constricted
resources make host-based detection harder, while the high
volume of traffic generated by these devices, on a high band-
width network running on technology such as the recent 5G
cellular network, make near real-time network level analysis
more difficult. It is also important that modern systems be able
to deal with the growing concern about data privacy.

The fog computing paradigm evolved to deal with some of
these issues, where focus is shifted away from a centralized
cloud computing environment towards the edge of the network.
The main idea behind this paradigm is that gateway devices
such as routers or base stations in an IoT network utilize their
processing and storage resources to process data closer to its
source, reducing latency and processing cost.

A. Objectives

In this dissertation, we propose an architecture to deal with
the challenges of designing an IDS for the IoT, namely the
limited characteristics of the IoT devices, the high amount
of data generated by the large amount of devices, most of
which are sensors, and the need for data privacy. We compare
different types of machine learning approaches to intrusion
detection, and analyze the advantages of offloading work
closer to the edge of the network.

To this end, we developed a prototype of our architecture,
SPATIO (end-uSer Protection Against ioT IntrusiOns), which
uses outlier detection algorithms to detect anomalies in IoT
networks. The core machine learning model works in a stream-
ing paradigm, analyzing data as it comes and producing alerts
in a timely manner.

We also compared a fog computing approach versus a more
centralized one, by distributing some processing of data to the
edge of the network, where gateway devices monitor the IoT
device network traffic, and transform it into flow metrics which
are consumed by the machine learning algorithm.

In developing SPATIO, we analyzed available machine
learning frameworks and discuss which is best for our case.
We also compare several public datasets on IoT intrusions.

We evaluate our prototype by measuring its accuracy in
detecting intrusions, as well as counting the number of false
alarms produced. We also evaluate the advantages of of-
floading work to devices in the edge of the network, by
comparing its performance to a centralized approach. We do
this evaluation on a public dataset of IoT intrusions.

B. Context

Telecommunications networks play an important role: they
connect the smart objects to the Internet, and are interested
in deploying IoT networks in industrial contexts, or for large
cultural events such as concerts. As such, it is in their interest
to protect clients from potential network intrusions that can
cause damage to their clients or their brand. We developed
this dissertation in collaboration with Vodafone Portugal, a big
portuguese telecom company and internet service provider, to
better understand the current trends in IoT networks, such as
what types of devices or architectures are being used.

II. BACKGROUND AND RELATED WORK

We start by presenting the Internet of Things (IoT), discuss
the fog computing paradigm and review research by other
authors in Intrusion Detection Systems for the IoT.

A. Internet of Things

The IoT is the ever-growing network of physical objects
that are connected to the Internet. It consists of many objects
of daily use with embedded smart sensors and computational
resources. These objects make possible new and innovative
applications [7].

According to an IoT Analytics research [1], in 2018 there
were 7 billion connected IoT devices, and by 2020 it is

expected that the number of IoT devices will surpass the
number of non-IoT active device connections worldwide.

With the ubiquity of the IoT, it makes sense to separate an
industrial focused use case from a consumer use case.

The Industrial Internet of Things (IIoT) is the concept
of IoT applied to the industry. For example, IoT has been
applied to the mining industry, for the safety of miners.
Environmental sensors are deployed to detect flooding, fires,
gas or dust explosions, cave-ins, toxic gas and other risk
factors. They also allow precise location and identification
of miners. By using wireless communication technology, like
WiFi and RFID (Radio-frequency Identification) to send the
collected information to the surface, mining companies can
keep track of the miners and analyze critical safety data to
enhance safety measures [8].

On the consumer side of the IoT, smart home technology
uses sensors and actuators in common household objects to
provide a better quality of living. Home parts are equipped
with different technologies for more intelligent monitoring
and remote control, as well as allowing interaction between
each smart component, such that everyday house activites are
automated without user intervention, or with more convenient
remote control [9]. Some of its applications include lighting,
air conditioning, energy management, security and control of
other home appliances. For example, a kitchen can have refrig-
erators, microwaves, coffee makers and dishwashers with IoT
capabilities [10]. One example is the Internet Refrigerator, as
developed by LG Electronics, an Internet enabled refrigerator
which lets the users download recipes and display them on
a liquid-crystal display (LCD) screen. The refrigerator is also
able to keep track of its inventory automatically, and alert the
user to what is there and what is missing.

B. Fog Computing

Fog computing is a distributed computing paradigm that
acts as an intermediate layer between services provided by
the cloud and the edge of the network, where the IoT devices
are [11]. The concept was introduced by Cisco in order to
address the challenges of IoT applications in conventional
cloud computing, such as the high amount of nodes, with
a wide geo-distribution, making a traditional geographically
centralized cloud solution not ideal, especially when dealing
with latency-sensitive operations.

A fog computing environment typically consists of gateway
devices, such as routers and base stations, placed in proximity
to the IoT devices and sensors. As opposed to the more
resource constrained IoT devices, these intermediary devices
have higher processing, storage and networking resources to
be able to do some pre-processing of the data coming from
the IoT devices before being sent to the cloud.

A fog computing approach can bring the following ad-
vantages [12]: Reduction of network traffic by doing pre-
processing of data before being sent to the cloud, better serve
local events by using locally stored information to act on
requests, lower latency by doing processing closer to source,
instead of having to do a round-trip to the cloud and back,

better scalability in the cloud by reducing the amount of work
and better control of data privacy, as data is processed closer
to it’s owner.

These advantages make fog computing a better fit for
IoT applications when compared to a traditional centralized
approach.

An example of a fog computing application is FoglLearn
[13], a fog architecture framework which, amongst other
scenarios, was used in detecting diabetes patients. It lever-
ages data collected from smart wearables in patients, using
fog devices to reduce latency and increase throughput. Data
collected from patients in the edge layer is first pre-processed
in the fog layer, before being sent to the cloud layer for further
analysis and long term storage.

C. Machine Learning for Intrusion Detection

Security is a growing concern in the IoT. IoT inherits the
traditional network security problems, and adds its own set
of problems. For example, IoT devices tend to have limited
computational resources, and a limited battery life. This makes
conventional cryptography harder to apply to such devices, due
to to the heavy use of resources such algorithms put on the
device [4].

Intrusion Detection Systems (IDS) are a common compo-
nent of network security systems. They help discover, deter-
mine and identify unauthorized use, duplication, alteration and
destruction of information and information systems [5].

When dealing with anomaly detection, for the purpose
of network intrusion detection, a fast solution with as little
human effort required as possible is preferred, to ensure
timely detection of any possible attack. This is where machine
learning solutions come in.

Machine learning consists of automated detection of
meaningful patterns in data [14]. It is an emerging field of
data analysis which became common standard in solving
most problems that require analyzing a large amount of data,
finding complex patterns that a human programmer cannot
explicitly define.

In this section, we look at some of the machine learning
solutions for anomaly detection proposed by other authors.

Gongalves et al. [15] propose a machine learning and
data mining approach for analysing log data and semi-
automatically discovering misbehaving hosts, without having
to instruct the system about how hosts misbehave. A
probability based clustering algorithm, the Expectation-
Maximization algorithm, is used, which has the benefit of not
requiring prior knowledge of the distribution of each feature
and other parameters, making it adequate for clustering large
datasets. Classification algorithms, a method of supervised
machine learning, are then used to assign clusters to classes,
such as “normal” and ‘“abnormal”. This is the phase that
requires the most human effort, but after the creation of the
classification model, human intervention is only needed if
the classification results are wrong, to update the model. The
authors concluded that while the presented process did extract

relevant security information from the logs that otherwise
is not directly observable, it is not accurate enough to take
automatic actions to deal with the misbehaving host.

Another example of machine learning applied to IoT
intrusion detection, Meidan et al. [16] propose a network-
based approach to anomaly detection using autoencoders to
detect botnets. The use of autoencoders has the advantage
of not needing manual classification of what is malicious
or benign, meaning unknown attacks can be detected. Also,
by profiling each device with a separate auto encoder, this
method addresses the growing heterogeneity of IoT devices.
For experimental evaluation, the authors created and used a
dataset out of devices purposefully compromised to the Mirai
and BASHLITE botnets. They were successful in detecting
every attack launched by each compromised IoT device, i.e.,
true positive rate of 100%. Also, compared to other algorithms
commonly used in anomaly detection (Local Outlier Factor,
One-Class Support Vector Machine and Isolation Forest),
this method got the fewest false alarms, while also being the
fastest method at detecting the attacks.

Chawathe [17] attempted to achieve similar accuracy, and
potentially better performance, than the system proposed by
Meidan et al. [16]. The author proposes a network-based
method for monitoring botnets on IoT devices, requiring no
access to the device other than the ability to monitor network
traffic from some other host on the network. The author
suggests the use of a simpler method based on supervised
machine learning through the use of classifiers alone. The
author concludes that simple classification methods can
achieve high accuracy in classifying network activity into the
11 classes, as well as achieving those high accuracy values
by using only a small fraction of the original attributes (over
99% accuracy using only 20 of the 115 attributes on one of
the devices in the dataset).

Outlier detection algorithms work by finding values which
deviates from other observations on data. This type of
algorithm lends itself to intrusion detection, since an attack
is by definition an outlier, as it deviates from the normal
behavior of a system. Auskalnis et al. [18] proposes the
usage of the Local Outlier Factor (LOF) algorithm to detect
anomalies in a computer network. The LOF algorithm detects
outliers by evaluating each event’s uniqueness based on the
distance from the k-nearest neighbours. The expectation is
that the density of events around an outlier is significantly
different than the density of its neighbours. The authors
evaluate their solution on an existing dataset, the NSL-KDD
dataset!. An accuracy rate of 0.84 was obtained. The results
are also compared to the accuracy rates of classification
methods, and obtain the same values for accuracy, however
the authors conclude using LOF or other unsupervised outlier
detection methods have the advantage of not needing labelled

Thttps://www.unb.ca/cic/datasets/nsl.html

Apache Kafka

Alert
Apache SAMOA

Fig. 1: Overview of the SPATIO architecture

datasets for learning.

ITII. SPATIO

In this chapter we present the SPATIO (end-uSer Protection
Against 10T IntrusiOns) system and its prototype implemen-
tation. We start with an overview of the architecture and
data pipeline in Section III-A, and then a more detailed
explanation of method and tool selection for each step, starting
with the machine learning framework in Section III-B, feature
extraction in Section III-C and feature selection in Section
III-D. We conclude with a summary of the SPATIO system.

A. Architecture

The goal of SPATIO is to detect anomalies in an IoT net-
work. For this we analyze network traffic, as the heterogeneity
of IoT devices, with varied characteristics, capacities and
goals, makes host-based detection difficult. We also expected
to obtain network captures from our collaboration with a
telecom company which deploys IoT networks. Figure 1 gives
an overview of the SPATIO architecture.

Devices in the fog of the network, such as routers, collect
incoming and outgoing network traffic of the IoT devices (left
side of Figure 1). We then take a fog computing approach,
as described in Section II-B, by having these devices also
process the raw data traffic into flow features. This process is
described in Section III-C. By doing this transformation closer
to the data source, we try to reduce network traffic, as only
the reduced flow features need to be sent to the cloud, instead
of the entire raw traffic. We also reduce the work needed to
be done in the cloud, increasing scalability.

Another advantage of the fog computing approach is in-
creased data privacy. By summarizing the whole traffic into
flow features, the actual content of communication is not sent.
Additionally, information identifying the devices, such as the
IP address, can be transformed into an alias to identify the
device.

Flow features are sent to the machine learning algorithm
through Apache Kafka?. Apache Kafka is a distributed stream-
ing platform which works like a Publish and Subscribe system,

Zhttps://kafka.apache.org/

acting as a message queue. We choose Kafka for its ability to
be distributed, preventing a single point of failure, as well as its
interoperability with our chosen machine learning framework,
Apache SAMOA, described in Section III-B.

SPATIO’s end result are alerts. These alerts indicate an
anomaly in the network, affecting a certain device. This
anomaly might or might not be the result of an ongoing attack.
Human validation is required to differentiate a benign anomaly
from an intrusion. This validation can later be done to teach a
classification algorithm to be able to differentiate benign from
malicious anomalies, although that was not explored in this
research.

B. Streaming and Machine Learning Framework

When choosing a machine learning framework, we looked
at available data analysis frameworks which featured machine
learning or integrated with a framework that did.

Streaming data analysis has the advantage of not requiring
data to be stored in memory, and providing quicker results.
In an IoT environment, the large number of devices can
generate a stream of data that is not feasible to be stored,
and dealing with intrusion detection requires timely detection,
which makes a streaming approach a good fit. As such we took
a streaming approach for SPATIO, using Apache SAMOA.

Apache SAMOA and Apache MOA? are open source frame-
works for data stream mining written in the Java programming
language. They both function very similarly in terms of pro-
gramming interface. However, SAMOA was built to be used
in a distributed environment. To this end it can integrate with
Apache Storm, Apache S4 or Apache Samza, other stream
processing frameworks which do not support machine learning
natively, but are made to be distributed over several nodes.
Although in our prototype for evaluation we do not use this
feature, opting for Apache SAMOA’s local mode, in a real
world scenario having the IDS be distributed is advantageous
as it prevent a single point of failure and spreads computation
allowing for faster response times.

SAMOA is an Apache Incubator project, meaning it is still
a developing project not ready to enter the Apache Software
Foundation. This reflects on the fact that it lacks diversity
in available machine learning algorithms, and a somewhat
lacking documentation. To solve the former problem of lack
of machine learning algorithms, we used MOA’s algorithms
in SAMOA. MOA is SAMOA’s centralized counterpart. It
is a more mature project, leading it to have more machine
learning algorithms available, in several categories from basic
classification and clustering tasks to outlier detection and
active learning. To export MOA’s algorithms to SAMOA, we
used an existing library*, although this library had not been
updated in 5 years and required some modifications before it
could be used.

We use outlier detection algorithms, which are a good fit for
intrusion detection since by definition, an attack is an anomaly.

3https://moa.cms.waikato.ac.nz/
“https://github.com/samoa-moa/samoa-moa

Entrance
Processor

Raw Traffic)
Data

Message Queue

loT Devices (Apache Kafka)

Flow

—>» Aler
Features ert

Learner

A 4

Alert
Processor

Apache SAMOA

Fig. 2: Overview of the SAMOA topology used for SPATIO.

They are an unsupervised algorithm, and do not require a
training period. SAMOA and MOA include the following
outlier detection algorithms, which we test in Section IV-B2:
ExactSTORM, ApproxSTORM, AbstractC and MCOD.

C. Feature Extraction

SPATIO monitors the network traffic in order to detect
anomalies. To this end gateways, such as routers, to which
the IoT devices are connected, are constantly capturing
network traffic using tools such as tcpdump’. While most
of these tools allow for filtering packets by port, address or
protocol, or more detailed filters, for SPATIO we do not use
this filtering feature and capture every packet arriving at the
network card.

For SPATIO, feature extraction is done in IoT devices
on the fog layer. Since it is important for an attack to be
detected as quickly as possible, and these types of device can
be resource constrained, we focus on analyzing the header
of the packages, instead of analyzing the contents of each
packet. Packet header anomaly detection also has the added
advantage of remaining valid when the payload is encrypted,
such as in an SSL session.

For our approach, we use single connection derived features,
features derived from a single connection, or flow. A flow
consists of all traffic with similar characteristics, usually
source and destination address and ports.

To transform a series of network packets, which is what
we are collecting with tcpdump, into flow records, we chose
the NetMate-flowcalc® tool. NetMate (Network Measurement
and Accounting Meter) is a network measurement tool used
to generate statistics of network traffic. We chose NetMate for
its ability to operate in real time, which is necessary for our
streaming approach, for its ease of configurability, where each
configuration, such as features extracted and the timeout period
for flow creation, is easily changed in a rule file, and because
it by default outputs the features in a comma separated value

Shttps://www.tcpdump.org/
Shttps://github.com/Daniel Arndt/netmate-flowcalc

(csv) format which makes no further parsing required before
sending the flow data to the machine learning algorithm.

NetMate captures 38 features by default, plus the [source
address, source port, destination address, destination port]
tuple used to identify the flow, i.e. all traffic which matches
these same characteristics are grouped into a single flow, as
long as the time between packets does not cross a certain
threshold, in which case a new flow is created.. We use
those features as the base features for SPATIO, before feature
selection described in the next section.

D. Feature Selection

Feature selection consists of selecting a subset of features in
order to reduce the dimension of the problem. This technique
brings several advantages, such as a better generalization of the
machine learning model to the problem, reducing overfitting;
reduction of network bandwidth used on sending the flow
features to the nodes running the machine learning model;
avoiding the curse of dimensionality, in which more features
makes the algorithm less efficient [19]. For anomaly detection,
the more features we consider in a flow, the more likely flows
are to be different from each other, making outlier detection
more difficult. As such, we can consider feature selection to
be the process of identifying and removing as much irrelevant
and redundant information as possible.

For feature selection we use WEKA’. WEKA is a suite
of machine learning tools and algorithms written in Java. It
contains several feature selection algorithms. For our purposes,
we need a feature selection algorithm which runs on unlabeled
data. We chose to use Principal Component Analysis as a
feature evaluator. Principal Component Analysis (PCA) works
by transforming the current set of features into a new reduced
set of features, known as the Principal Components. This new
set is choosen such that each component is orthogonal to each
other, i.e. uncorrelated. Two features are correlated when a
change in one leads to a change in the other. An example
of two correlated features are total_fpackets (total packets in
the forward direction) and total_fvolume (total bytes in the
forward direction), since one can expect the number of bytes

https://www.cs.waikato.ac.nz/ml/weka/

to increase with more packets sent. This does not always need
to be observed for the features to be correlated, but the more
present it is, the more strongly correlated the features are.

The new set of features produced by PCA are essentially
linear combinations of the original features, where each feature
is given a weight. Although new set of features can be used for
machine learning directly, we thought it would be interesting
to analyse which features of the original set extracted would
be more relevant to intrusion detection in our dataset. To this
end, we summed the weights given to each feature in each
Principal Component, considering that the higher this sum,
the more relevant the feature is.

E. Summary

This chapter presented SPATIO, a system to detect anoma-
lies in an IoT network. Figure 3 summarizes the data-flow
between the components of the SPATIO architecture. Network
traffic is collected from IoT. This traffic get processed into
flows through feature extraction. The system can then use
these flows, or further refine them by going through fea-
ture selection. Feature selection analyses the extracted flows,
and through correlation analysis returns the n-sized subset
of features that more accurately represent the dataset. This
process only has to be done once. After feature extraction, the
flows are sent to the machine learning framework, running an
outlier detection method. This outputs alarms, which indicate
an anomaly in a certain device.

IV. EVALUATION

In this chapter we present the experiments that were done
to evaluate the SPATIO prototype using a public dataset. The
experiments assessed the accuracy of the prototype and the
choice of architecture. We were interested in answering the
following questions about our system:

« What percentage of attacks can our system detect?

o How many false alarms will be generated?

« What features are relevant for intrusion detection systems,
and how does the quantity of considered features affect
the results?

e« What are the advantages of offloading work to fog
devices?

A. Dataset

To evaluate SPATIO, we tested our prototype on an existing
dataset. We were originally planning on capturing our own
set of data from a real IoT network in collaboration with
a telecom company, but we were not able to find a proper
IoT environment currently running and get the required au-
thorizations for data capture in time. Since we are interested
in testing the feature extraction from the raw data traffic, we
look exclusively at datasets that provided the entire network
capture, in a pcap format. The datasets we considered are
summarized in Table 4.1.

To choose a dataset, we focused on certain qualities: the
dataset had to be labeled, so we could easily test the accuracy
of our solution, it had to be IoT related, and have as many

devices as possible. We decided on using a dataset collected
for ACM SOSR 2019 by Hamza et al. [20]. Although this
dataset cover less devices and less attack types, focusing only
on Denial of Service (DoS) attacks, it was the IoT dataset with
the best labeling for our purposes.

The chosen dataset consists of network traffic collected in a
lab. The lab is comprised of a TPLink gateway with OpenWrt
firmware serving 27 IoT devices, of which 10 are used as
victims for attacks. The network traffic is captured at the
gateway. Benign traffic is collected by simulating possible user
interaction with each IoT device, while malicious traffic is
captured by running a script exploiting known vulnerabilities
to carry out both reflected and direct DoS attacks. Traffic is
captured over a month, with two periods of around a week
where attacks happen, which we name Period 1 and Period
2. The attacks present in the dataset consist of direct DoS
attacks, in which the targeted devices are the victims, and
reflected DoS attacks, in which the targeted device is used to
attack another outside device. All of the attacks are sustained
for 10 minutes, at various packet rates, and in total there are
200 attacks.

B. Accuracy Evaluation

The first set of tests measures the accuracy of the system.
We take into consideration the following metrics:

o Total alarms, the total number of alarms generated.

o Attacks detected, the number of attacks detected. To
calculate this metric, we consider any attack during which
an alarm is generated, linked to the device being attacked,
as being detected. Multiple alarms during the same attack
do not further increase this number.

o Percentage of Attacks detected, the percentage of attacks
detected, calculated by dividing Attacks detected by the
total number of attacks as stated by the ground truth of
the dataset.

o Alarms during attack, the number of alarms generated
during attacks. This includes multiple alarms generated
in a single attack.

o Percentage of Alarms during attack, the percentage of
alarms which fall inside an attack window for that device.
This is calculated by dividing Alarms during attack by
Total alarms. The remaining percentage is the false alarm
percentage.

e Fulse Alarms (ALL), the number of false alarms. A false
alarm is an alarm which happens while there is no attack
occurring on the related device.

o False Alarms (Imin). This metric works like the one
above, but after an alarm occurs, no more alarms can
occur for one minute.

o False Alarms per day, the amount of false alarms gen-
erated per day, based on the results of the metric False
Alarms (Imin).

1) Evaluation Environment: Since these tests do not con-
sider the performance of the solution, and only the accuracy
of the machine learning model, they were run on a dedicated
machine with the pipeline simplified to SAMOA reading the

Done once.

Feature
Extraction

Raw Traffic

loT Devices Data

Feature
Ranking

Feature
Selection

Outlier
Detection

Flow

Features Alert

Fig. 3: Data-flow diagram for the SPATIO architecture.

previously generated flow metrics directly from a file. This
machine has 16 GB of RAM, 1 TB of disk storage and is
running Debian GNU/Linux Buster.

After collecting the alerts in a file, a Python script is run
which compares them with the ground truth provided by
the dataset, providing the metrics described in the previous
section.

2) Outlier Detection Algorithms: We start by measuring
how the considered metrics vary by using different outlier
detection methods. The results are shown in Tables I and II.
We defer the discussion of these results to Section IV-B4.

TABLE I: Evaluation of the accuracy metrics according to
tested outlier detection algorithm for Period 1.

day with attacks ensures we capture the features more relevant
to detect attacks, while using only one day ensures we do not
overfit our selection.

With the feature ranking in mind, we tested how the number
of considered features affect the metrics described in Section
IV-B. We run five tests for each period, considering the 6, 12,
18, 24 and 30 most relevant features. We also compare with
the base 36 feature result obtained in the previous section.

These tests use the same environment as the ones done
in the previous section, and run the MCOD outlier detection
algorithm. The results are shown in Tables III and IV.

TABLE III: Evaluation of the accuracy metrics according to
changing number of features for Period 1.

Period 1 Period 1
Algorithm MCOD ExactSTORM ApproxSTORM AbstractC Number of Features 6 12 18 24 30 36
Total Alarms 218203 222147 218912 219045 Total Alarms 50999 204649 204819 211459 218221 218203
Attacks Detected 43 43 43 43 Attacks Detected 38 39 39 43 43 43
%Attacks Detected 79.63% 79.63% 79.63% 79.63% %Attacks Detected 70.37% 72.22% 72.22% 79.63% 79.63% 79.63%
Alarms during attack 5411 5459 5441 5438 Alarms during attack 2069 4640 4686 4717 5413 5411
%Alarms during attack 2.48% 2.46% 2.49% 2.48% %Alarms during attack 4.06% 2.27% 2.29% 2.23% 2.48% 2.48%
False Alarms (all) 212792 217238 213334 213539 False Alarms (dH) 40042 204814 204477 212563 212792 212792
False Alarms (1min) 6759 6759 6759 6759 False Alarms (1min) 10115 5549 5186 6759 6759 6759
False Alarms per day 563 563 563 563 False Alarms per day 920 504 471 614 614 614

TABLE II: Evaluation of the accuracy metrics according to
tested outlier detection algorithm for Period 2.

Period 2
Algorithm MCOD ExactSTORM ApproxSTORM AbstractC
Total Alarms 130312 97216 95841 95443
Attacks Detected 61 58 58 58
%Attacks Detected ~ 75.31% 71.60% 71.60% 71.60%
Alarms during attack 22681 20341 20228 20203
Y Alarms during attack 17.41% 20.92% 21.11% 21.17%
False Alarms (all) 107631 97216 95842 95443
False Alarms (1min) 7999 5957 5953 5950
False Alarms per day 667 496 496 496

3) Feature Selection: As explained in Section III-D we
use Principal Component Analysis (PCA) in WEKA to rank
our features, by considering the sum of the weights of each
Principal Component. We take one day of Period 1 where
attacks happen as the training dataset to run PCA. Selecting a

TABLE IV: Evaluation of the accuracy metrics
changing number of features for Period 2.

according to

Period 2
Number of Features 6 12 18 24 30 36
Total Alarms 22967 28423 82541 90330 92554 130312

Attacks Detected 53 55 56 58 58 61

%Attacks Detected 65.43% 67.90% 69.14% 71.60% 71.60% 75.31%
Alarms during attack 17001 18537 19020 19302 20663 22681
%Alarms during attack ~ 74.02% 65.22% 23.04% 21.37% 2233% 17.41%
False Alarms (all) 21142 26164 75983 78334 80444 107631
False Alarms (1min) 6079 6001 5931 6070 5957 7999
False Alarms per day 553 546 539 552 542 727

4) Discussion: We can see all the tested outlier detection
algorithms give similar results. In Period 1, we were able to
detect 79.62% of the attacks in all cases. However, a differ-
ence can be seen when comparing false alarms. The MCOD
algorithm had the lowest amount of generated alarms, and
one of the highest percentage of alarms that were generated

during an attack, leading it to have the least amount of false
alarms. In a real life situation, a false alarm requires human
intervention, wasting time. It also potentially leads to alert
fatigue, a situation in which so many false alerts are being
generated that the human operator becomes desensitized to
them, leading to a longer response time to real attacks, or
even missing them completely [21]. As such, a lower number
of false alarms, and of alarms in general, is desirable. To this
extent, we measured the number of false alarms generated if
we blocked alarm generation for one minute after an alarm.
The principle behind this idea is that when an anomaly occurs,
whether it is benign or not, it can have an impact on multiple
connections, generating several alerts in a short amount of
time. This does seem to be the case, as this change reduces
the number of false alarms considerably.. A similar idea can be
applied to real attack alarms, to reduce the number of alarms
in general. In Period 2, we observe a smaller percentage of
detected attacks, and a smaller percentage of total alarms. This
can occur because of the different devices being tested in the
different periods, where attacks on this new set of devices are
harder to distinguish from normal benign traffic.

In Section IV-B3 we tested how the considered metrics
change as the number of features change. A noticeable pattern
is that as less features are considered, less alarms are gen-
erated, but the number of attacks detected also lowers. This
can be explained by the loss of information when removing
features. Outlier flows could be outliers by varying a lot on
a certain feature, which could then be removed in feature
selection, thus this outlier is no longer classified as such.
We can see that when we use only 6 features, the metrics
of false positives start to get worse due to too much loss of
information. It’s also interesting to note that the number of
false alarms tends to reduce as less features are used, but only
because the total alarms is also reducing, as the percentage of
false alarms actually increases with less features. Still, using
a lower number of features is something to be considered,
because although the detection rate of the system is lower, the
bandwidth used to transmit the flows will also be lower, and
less alarms in total will be generated, which can be useful in
a situation where dealing with alarms has some resource cost
associated. In Period 2, we see a bigger drop off in accuracy
with less metrics. This can be caused by the fact that feature
selection was done over the dataset of Period 1, making those
features more accurate at representing traffic from Period 1.

C. Architecture Comparison

The second set of tests compares the chosen architecture
of SPATIO, where work is offloaded to fog devices, with a
centralized approach, i.e. an architecture that skips this step,
choosing instead to transmit the captured packets directly to a
central server running the machine learning algorithm, which
then also becomes responsible for feature extraction.

1) Evaluation Environment: To test our architecture in
comparison with a centralized approach, we set up two sce-
narios using virtual machines. In the first scenario, testing the
fog computing approach, two VMs act as gateway devices,

collecting the IoT traffic and running the feature extraction,
and then sending the flow features to a VM representing
the cloud, running Apache Kafka and Apache SAMOA. In
the second scenario, testing the centralized approach, the two
gateway VMs still collect traffic from the IoT devices, but
this traffic is sent directly to the cloud VM, with no feature
extraction. The cloud VM is then responsible for doing feature
extraction.

The gateway VMs were modelled after specifications of
gateways being used in real IoT networks, given to us by a
telecommunications company. As such, it contains 512MB of
RAM, and 4GB disk storage. The cloud VM has 8GB RAM
and 32GB disk storage. Both VMs run Debian GNU/Linux
Jessie 64 bit.

To emulate the IoT device traffic, tcpreplay® was used to
replay the dataset in a dummy network interface.

2) Network Bandwidth Usage: In this section we consider
the differences of network bandwidth usage between sending
the raw traffic in the network, or only sending the extracted
flow records. We measure the size of the raw traffic for each
period, and the size of the flow records. We then calculate
the average bandwidth in bps by dividing the total size by the
duration of the experiment. The results are shown in Table V.

TABLE V: Network bandwidth difference between centralized
and fog approach.

. . Bandwidth Bandiwdth
Total size Total size . .
avg sending avg sending
raw traffic flows
raw traffic flow features
Period 1 28.2 GB 1.72 GB 29209 bps 1787 bps
Period 2 25.6 GB 4.50 GB 28998 bps 5092 bps

We can see using flow metrics results in much lower
bandwidth requirements, reaching a 90% reduction in the case
of Period 1.

3) Latency: In this section, we compare the different ar-
chitectures by measuring the latency in anomaly detection. To
do this, we use 10 benchmark alerts, and measure how fast
each solution creates that alarm. We repeat each test five times,
and take the average as our value. Since the dataset contains
traffic captured over a month, o reduce the time it takes to
perform the test and to emulate more network traffic, one day
was chosen from the dataset and data was replayed at a rate
of 100 MB/s. The results are shown in Figure 4, where each
data point represents a benchmark anomaly.

8https://tcpreplay.appneta.com/

350 T — \ —
—— Fog Approach
300 || —~— Centralized Approach

250

200

150

100

Time to detect [seconds]

50

Benchmark Alert

Fig. 4: Detection latency in fog versus centralized approach

4) Discussion: 10T networks tend to have many connected
devices, and use lower bandwidth technologies such as Low-
power wide-area networks (LPWAN) for long-range communi-
cations at low power consumption and low data rate. As such,
minimizing network traffic is advantageous. Transforming raw
traffic into flow records can reduce network usage by a lot,
as would be expected since an entire connection of packets is
transformed into a single line of features. An interesting fact
to note is that despite having lower traffic size, Period 2 flow
records are bigger. This can be explained by the fact that a
flow can cover an entire connection, regardless of number/size
of packets. For example, if a device was to download a
video from the internet sized 1GB, this entire 1 GB worth
of traffic would be transformed in a single flow. In fact, by
further analysing which devices are being used in Period 2,
we can see devices such as Chromecast, used to stream video,
and Amazon Echo, a virtual assistance with features such as
playing music from the Internet.

In the latency test, we can observe both approaches get
worse latency as time goes by. This indicates data is be-
ing backlogged somewhere. In the centralized approach, this
latency increase is more accentuated, which could indicate
feature extraction on the server accounts for a big portion of
the backlog, showing the advantage of distributing this task
to the gateway devices. It is important to note that this test
is done under a constant rate of 100 MB/s of traffic. In a
situation with lower data rates, the difference between the two
approaches is likely to reduce.

D. Summary

The experimental results of the SPATIO prototype regarding
accuracy and false positive rate allow us to reach a few con-
clusions. First, the choice of algorithm is not as important as
the features selected to represent the data. We can observe that
although not much changes in accuracy between algorithms,
selecting different amounts of features lead to a big change.
When developing an IDS, one must consider the trade off
between having many features, leading to an higher network

and computing cost, and having fewer features, leading to
a lower accuracy. We can also observe how proper feature
selection impacts the results. In our prototype, feature selection
was done based on data from Period 1 alone. This leads to a
situation where, when using a lower amount of features, the
system performs better on Period 1 than on Period 2.

We also observed the advantages of the fog computing
approach taken in SPATIO. We were able to reduce network
bandwidth usage by 90% by preprocessing the data closer to
the data source. We also reduced load on the cloud server,
leading to a lower alarm latency. This means that alarms are
delivered faster, which can bring benefits when responding to
attacks.

V. CONCLUSION

In this dissertation, we analysed the IoT as a growing
market, and identified the challenges it brings. We contribute
with a solution for better security in IoT, as several reports
show it to be a growing concern. Specifically, we address how
to design an IDS for the IoT, having to deal with the IoT
device’s constrained processing and storage resources, the high
amount of traffic in an IoT network, and the timely response
time needed when dealing with potential security alerts.

Our presented solution is called SPATIO, a system to detect
intrusions in the IoT. SPATIO finds intrusions in a network
by monitoring traffic of the IoT devices, and feeding it to a
machine learning model running outlier detection algorithms,
which are a good fit to this problem as attacks are outliers by
nature. To deal with the high amount of traffic in the network,
while providing timely alerts, we adopted a streaming solution,
which processes the incoming data flows in a continuous
manner. This means we do not need to wait for a window of
processing, as would be the case in batch processing, providing
a faster generation of alerts. This streaming approach also has
the advantage of not requiring the storage of data, which would
not be practical in the IoT devices due to storage constraints,
nor in the cloud, do to the high amount of devices generating
high amounts of traffic.

We also take a fog computing approach in SPATIO. Feature
extraction, i.e. generating useful metrics based of flows of data,
is done on devices closer to the edge of the network. Using
the IoT devices themselves, i.e. edge computing, would not
be practical due to the constrained processing resources they
possess. Instead, by using gateways such as routers and base
stations, we reduce work load on the cloud (central servers),
increasing scalability, while also reducing overall network
traffic, since only the transformed flow features are sent,
instead of the entire raw traffic. Additionally, fog computing
allows for better data privacy control, as data is processed
closer to the owner of the data. This allows the removal
of sensitive data and any personally identifiable information
before it is sent to the cloud.

A. Achievements

We developed a prototype of SPATIO and used it to run tests
on a public IoT network intrusion dataset. In the best case, we

manage to detect 79.63% of the attacks, while producing on
average 614 false alarms per day, over an eleven day period.
While this amount of false alarms are somewhat high, we
believe it can be much further reduced and discuss a possible
way in Section V-B.

In our evaluation,we observed a trade off between having
an higher amount of features, resulting in a better accuracy,
and a lower amount of features, reducing network traffic and
requiring less computational power.

We also observed the advantages of taking a fog computing
approach. SPATIO reduces traffic in network by 90% by
sending flow features to the cloud instead of the entire raw
traffic. It also shows a clear advantage in timely processing
of the information when offloading work to the fog devices,
especially in a period of high constant throughput, where a
backlog of data starts forming.

B. Future Work

While evaluating our prototype, it became clear it produced
too many false alerts. This can lead to alert fatigue, a situation
in which so many false alerts are being generated that the
human operator becomes desensitized to them, leading to a
longer response time to real attacks, or even missing them
completely. To deal with this issue, a classification algorithm
can be added to the SPATIO machine learning pipeline, after
the outlier detection. The idea would be to further classify
alerts into malicious and non malicious. While this would
require initial human effort, the system would learn from
each false alarm and gradually produce fewer and fewer false
alarms.

Something that difficulted our work when evaluating SPA-
TIO was the lack of a good IoT dataset containing traffic from
a high number of devices in a real scenario. Although the lack
of such public datasets might be understandable, by the fact
that real traffic captures might contain private data and there-
fore not many entities currently running IoT networks would
be willing to part with their captures. Nonetheless, SPATIO
would benefit from a dataset containing more throughput and
devices, mirroring a real life scenario.

Finally, as computational resources become cheaper, more
work can be offloaded to fog devices. An interesting path for
future work is to further research what can be offloaded to
these devices. A possible approach would be using federated
learning, as recently proposed by Google [22], where the fog
devices would download the machine learning model from
the cloud, update it with local data, and send back the update
to the cloud, allowing distributed learning from the collected
data, without the data ever leaving the devices.

REFERENCES
[1]
[2]
[3]

[4]

IoT Analytics, “State of the IoT & Short term outlook 2018,” 2018.
NETSCOUT, “Dawn of the Terrorbit Era,” 2018.

Ponemon Institute, “Second Annual Study on The Internet of Things
(IoT): A New Era of Third-Party Risk,” 2018.

W. Trappe, R. Howard, and R. S. Moore, “Low-Energy Security: Limits
and Opportunities in the Internet of Things Low-Energy Security: Limits
and Opportunities in the Internet of Things,” IEEE Security & Privacy,
2015.

10

[5]

[6]

[7]

[8]
[9]
(10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

S. Mukkamala, A. Sung, and A. Abraham, “Cyber Security Challenges:
Designing Efficient Intrusion Detection Systems and Antivirus Tools,”
Enhancing Computer Security with Smart Technology, 2005.

B. B. Zarpelao, R. S. Miani, C. T. Kawakani, and S. C. de Alvarenga, “A
survey of intrusion detection in Internet of Things,” Journal of Network
and Computer Applications, 2017.

A. Al-Fugaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications,” IEE Communications Surveys & Tutorials,
Volume 17, 2015.

W. Qiuping, Z. Shunbing, and D. Chunquan, “Study on key technologies
of Internet of Things perceiving mine,” Procedia Engineering Vol. 26,
2011.

R. Kadam, P. Mahamuni, and Y. Parikh, “Smart Home System,” In-
ternational Journal of Innovative Research in Advanced Engineering,
2015.

J. Barthold, “Changing the Way Houses Operate,” 2005.

R. Mahmud, R. Kotagiri, and R. Buyya, “Fog Computing: A Taxonomy,
Survey and Future Directions,” Internet of Everything, 2017.

A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya,
“Fog Computing: Principles, Architectures, and Applications,” Internet
of Things Chapter 4, 2016.

R. K. Barik, R. Priyadarshini, H. Dubey, V. Kumar, and K. Mankodiya,
“FogLearn: Leveraging Fog-Based Machine Learning for Smart System
Big Data Analytics,” International Journal of Fog Computing, Volume
1, 2018.

S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning:
From Theory to Algorithms, C. U. Press, Ed. Cambridge University
Press, 2014.

D. Gongalves, J. Bota, and M. Correia, “Big Data Analytics for Detect-
ing Host Misbehavior in Large Logs,” in Proceedings of the 14th IEEE
International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom), 2015.

Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, D. Breitenbacher,
A. Shabtai, and Y. Elovici, “N-BaloT: Network-based Detection of IoT
Botnet Attacks Using Deep Autoencoders,” I[EEE Pervasive Computing,
2018.

S. Chawathe, “Monitoring IoT networks for botnet activity,” 17th IEEE
International Symposium on Network Computing and Applications,
2018.

J. Auskalnis, N. Paulauskas, and A. Baskys, “Application of Local
Outlier Factor Algorithm to Detect Anomalies in Computer Network,”
Elektronika ir Elektrotechnika Volume 24, 2018.

M. Verleysen and D. Francois, “The curse of dimensionality in data
mining and time series prediction,” in IWANN’05 Proceedings of the Sth
international conference on Artificial Neural Networks: computational
Intelligence and Bioinspired Systems, 2005.

A. Hamza, H. H. Gharakheili, T. Benson, and V. Sivaraman, “Detecting
Volumetric Attacks on IoT Devices via SDN-Based Monitoring of MUD
Activity,” ACM SOSR, 2019.

Angela Sasse, “Scaring and Bullying People into Security Won’t Work,”
IEEE Security & Privacy, 2015.

K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Kone¢ny, S. Mazzocchi, H. B. McMahan,
T. V. Overveldt, D. Petrou, D. Ramage, and J. Roselander, “Towards
Federated Learning at Scale: System Design,” 2019.

