Summary

An Introduction to e Concurrent objects
the Implementation of Concurrent Objects Safety: Linearizability vs sequential consistency

e Lock-based implementations

Michel RAYNAL Mutex-free implementations

raynal@irisa.fr Liveness: Progress conditions

Hybrid implementations

Conclusion

Institut Universitaire de France

IRISA, Université de Rennes, France

— —
— IRISA An introduction to the implementation of concurrent objects 1 — IRISA An introduction to the implementation of concurrent objects 2

Scurce Part 1

e T he content of these slides are frcm chapters 2, 5 and
6 of the book (composed of 17 chapters)

Concurrent Objects

Concurrent Programming: The aim is here to get an intuition of what is a concurrent object
Algorithms, Principles and Foundations.

Springer, 515 pages, 2013 (ISBN 978-3-642-32026-2)

— —
— IRISA An introduction to the implementation of concurrent objects 3 — IRISA An introduction to the implementation of concurrent objects 4

Computation Mcocdel

e A set Il of n asynchronous processes p1,...,pn

e A shared memory made up of atomic read/write
registers

e Failure model: process crash model

* Terminology:
Correct = a process that never crashes

Faulty = a process that crashes

* gsz upper bound on the nb of faulty process-

x Failure-free: t =0
* Wait-free model t =n -1
* t-resilient model: 1 <t<n

—
— IRISA An introduction to the implementation of concurrent objects 5

Concurrent Object

An object accessed by concurrent processes

Enqueue (v) r « Dequeue ()

L

—
— IRISA An introduction to the implementation of concurrent objects 6

Concurrent Object

e Defined by a sequential specification
*x Stack, queue, graph, set, etc.
e Defined by a non-sequential specification

* Rendezvous object,
* Non-blocking atomic commit (NBACQC)

—
— IRISA An introduction to the implementation of concurrent objects 7

Nocn seq. specificaticn: the NBAC example

Each process is assumed to vote yes or no

e Termination. A process that does not crash decides
e Agdgreement. No two processes decide differently

e Validity. A decided value is abort or commit

x Justification. commit decided = all processes have
voted yes

* Obligation. No process crashes and all processes
vote yes = commit is decided

—
— IRISA An introduction to the implementation of concurrent objects

Object considered here

e Sequential specification

e With total operations:

An operation can always return a result (no blocking
imposed by the spec)

* E.g., pop() on an empty stack returns empty
* E.g., enqueue() on a full bounded queue returns full

Hence, (if any) blocking is due to the implementation,
not to the spec

—
> IRISA

An introduction to the implementation of concurrent objects 9

Sequential vs Concurrent (1)

SEQUENTIAL: |

Eng (a) Enq (c) Enq (b) Deq (a) Deq (c)

[CONCURRENT: |
Eng (a) Eng (b) Deq (alble) 7
pP1
Eng (¢) Deq (alblc) 7
b2

—
— IRISA An introduction to the implementation of concurrent objects

10

Sequential vs Concurrent (2)

Eng (a) Eng (b) Deq (alblc) ?

p1
ng (¢) Deq (a&?

Eng (;) Enq (c) § Deq (b)
Eng (b) Deq (a)

This “history” belongs to the sequential specification

—
— IRISA An introduction to the implementation of concurrent objects 11

Sequential vs Concurrent (3)

Eng (a) Eng (b) Deq (alblc) 7

P1

Eng (c¢) Deq (alblc) ?

3Enq (a) E;eq (a)
Ena (<) Eng (b) Deqg (c)

This “history” belongs to the sequential specification

—
— IRISA An introduction to the implementation of concurrent objects

12

Part 11

On the SAFETY side:
Consistency conditions

The aim is here toc answer the question:

what is a correct execution involving a set of objects?

—
— IRISA An introduction to the implementation of concurrent objects 13

Linearizability

e a history is linearizable if

*x each operation appears as if it has been executed in-
stantaneously at some point of the time line between
its start event and its end event

* No two operations appear at the same point of the
time line

*x the corresponding sequence belongs to the specifica-
tion of the objects

- Herlihy M.P. and Wing J.M., Linearizability: a correctness condition for concurrent
objects. ACM Toplas, 12(3):463-492, 1990

—
— IRISA An introduction to the implementation of concurrent objects 14

Atomicity vs Linearizability

e Atomicity first introduced for read/write registers

- Lamport L., On interprocess communication, Part I: basic formalism. Dis-
tributed Computing, 1(2):77-85, 1986

-Lamport L., On interprocess communication, Part II: algorithms. Distributed
Computing, 1(2):77-101, 1986

e Linearizability extends Atomicity tc any object with a
sequential specification

e Hence, Atomicity and Linearizability can be considered
as synonymous

—
— IRISA An introduction to the implementation of concurrent objects 15

Another consistency condition: seqg consistency

e Similar to Linearizability without requiring agreement
with real time

Q.enq(a)
p1

Q.enq(b) Q.deq() — b

p2

- Lamport L., How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Transactions on Computers, C28(9):690-691, 1979

Seq consistency is more interesting in message-passing sys-
tems

—
— IRISA An introduction to the implementation of concurrent objects 16

The fundamental difference: composability

Locality property: A property P is local if a set of object-
%as a whole satisfies P whenever each object satisfies

e Locality = modularity
independent implementations compose for free
e Linearizability is a local property

Sequential consistency is a not local property

—
— IRISA An introduction to the implementation of concurrent objects 17

The benefit of linearizability

Q.enql1() Q.deq1() Q.enq2() Q.deq2()

RN
Ql.eng() Qll.deq() Q2.enc|;() QI2.deq()
1) 1) V V
Queue @1 Module Il Module I2 | Queue @2
Module I implementing the object @

—
> IRISA

An introduction to the implementation of concurrent objects

18

Seq consistency is not a lecal property

Q.enq(a) Q'.enq(t) Q'.deq() — v’

p1

Q'.enq(a’) Q.enq(b) Q.deq() — b

p2

—
— IRISA An introduction to the implementation of concurrent objects 19

Part III

Lock-based Implementations

—
~ IRISA

An introduction to the implementation of concurrent objects

20

Classical apprcaches

e Lock = Mutual exclusion
e Lock from read/write registers
e Low level locks: Semaphores

Imperative language: monitors (Hoare, Brinch Hansen)

Declarative language: path expressions (Campbell)

—
— IRISA An introduction to the implementation of concurrent objects 21

On the liveness side: liveness conditicns

e Deadlock-freedom:
At least one operation invocation always terminates

e Starvation-freedom:
All operation invocations terminate

—
— IRISA An introduction to the implementation of concurrent objects

22

From deadlock-free lock to starvation-free lock

Such a construction is based on

e An SWMR array FLAG[1..n] with an entry per process
(init to [down, .., down])

o A MWMR register T'U RN which contains a proc identity

e A deadlock-free lock DF_LOCK (e.g., Lamport's fast
mutex algorithm)

- Taubenfeld G., Synchronization algorithms and concurrent programming. Pearson
Education/Prentice Hall, 423 pages, 2006 (ISBN 0-131-97259-6)

- Lamport L., Fast mutual exclusion. ACM TOCS, 5(1):1-11, 1987

—
— IRISA An introduction to the implementation of concurrent objects 23

The construction

operation acquire SF lock(z) is
FLAGi] < up;
wait [(TURN =1i) vV (FLAG[TURN] = down)];
DF _LOCK .acquire_DF _lock(7);
return()
end operation.

operation release DF mutex(z) is
FLAG[i] « down;
if (FLAG[TURN] = down)
then TURN « (TURN mod n) +1
end if;
DF _LOCK .release_DF _lock(7);
return()
end operation.

—
— IRISA An introduction to the implementation of concurrent objects

24

Reminder

From a computability point of view

e Mutex can be implemented in crash-free systems from
atomic read/write registers

e b-valued atomic read/write registers can be built from
safe bits
e Mutex can be implemented directly from safe registers

- Lamport L., A new solution of Dijkstra's concurrent programming problem. Com-
munications of the ACM, 17(8):453-455, 1974

- Aravind A.A., Yet another simple solution to the concurrent programming control
problem. IEEE Trans. on Parallel and Distributed Systems, 22(6):1056-1063, 2011

—
— IRISA An introduction to the implementation of concurrent objects 25

Part IV

Mutex-free Implementations

—
— IRISA An introduction to the implementation of concurrent objects 26

Drawbacks of lcck-based implementaticns

e In a lock-based solution: one process at a time can
access a given object

e Make the progress of processes depends the ones from
the others

x Deadlock-prone
x Cannot cope with the net effect of

* asynchrony
* and failures

*x Process scheduling, swapping

—
— IRISA An introduction to the implementation of concurrent objects 27

Drawback due lock granularity

Example of a double-ended queue

Operations accessing Operations accessing
from the left sideQ-8] Q[-6] Q[-4] Q[-21 Q0] Q2] Q[4] Q_[5_1|__|_Q_[7_]|__'_ from the right side

il e A e B

eft eng() et iLeideiefLefa [b e [d e | F | Lo Lok idoido il right eng()
left_deq() D A T tight _deq ()
Left side of the queue 17 RI Right side of the queue

—
— IRISA An introduction to the implementation of concurrent objects 28

Mutex-free implementation

Do not use lock (implicitly or explicitly)

History H

O.0p1() by p1 0.0p2(b) by p> 0.0p1() by p3
linearization at the object level *

History at the
implementation level

O O 20 OO U O
R1 R3 R2R3R3 R2R3 R1 R2 R1

No code is protected by a critical section (lock)
- Lamport L., Concurrent Reading and Writing. CACM, 20(11):806-811, 1977
- Peterson G.L., Concurrent reading while writing. ACM TOPLAS, 5:46-55, 1983
- Herlihy M.P., Wait-free synchronization. ACM TOPLAS, 13(1):124-149, 1991

—
> IRISA

An introduction to the implementation of concurrent objects 29

Progress (liveness) conditions

e Obstruction-freedom (is wrt concurrency)
e Non-blocking (~ deadlock-freedom)

e Wait-freedom (~ starvation-freedom)

x Finite wait-freedom
x Bounded wait-freedom

These progress conditions cope naturally with any asyn-
chrony and crash pattern (while —lock-based— deadlock-
freedom and starvation-freedom do not), i.e., they implic-
itly consider t = n — 1 (wait-free model)

—
> IRISA

An introduction to the implementation of concurrent objects 30

Liveness conditions: Summary

| Lock-based implementation | Mutex-free implementation |

Obstruction-freedom
Non-blocking
Wait-freedom

Deadlock-freedom
Starvation-freedom

—
~ IRISA

An introduction to the implementation of concurrent objects 31

A simple thecrem

e Context:

* One-shot objects
x Bounded nb of processes

e Theorem: Non-blocking = Wait-free

—
— IRISA An introduction to the implementation of concurrent objects

32

Boosting obstruction-freedom

e From Obstruction-freedom to non-blocking
e From Obstruction-freedom to wait-freedom
e Failure detector-based contention managers

- Guerraoui R., Kapalka M. and Kuznetsov P., The weakest failure detectors to boost
obstruction-freedom. Distributed Computing, 20(6): 415-433, 2008

—
— IRISA An introduction to the implementation of concurrent objects 33

Boosting obstruction-freedom (2)

operation; () operation,,,()

need_help()

Failure detector-basefd

Obstruction-free
Contention managgt

implementation

stop_help()

—
— IRISA An introduction to the implementation of concurrent objects 34

A very simple wait-free object: the Splitter (1)

e \Validity. Value returned by direction() is right, left, or stop

e Concurrent execution. If x processes invoke direction():

* At most =z — 1 processes obtain the value right
* At most =z — 1 processes obtain the value [eft
* At most one process obtains the value stop

e Termination. Any invocation of direction() terminates

—
— IRISA An introduction to the implementation of concurrent objects 35

A very simple wait-free object: the Splitter (2)

x processes invoke SP.direction(z)

<z — 1 processes _ <z — 1 processes
- left right ——=
stop

\Lg 1 process

—
— IRISA An introduction to the implementation of concurrent objects 36

A very simple wait-free object: the Splitter (3)

operation SP.direction(z) is
LAST « 1
if (DOOR = closed)
then return(right)
else (DOOR « closed;
if (LAST =1)
then return(stop)
else return(left)
end if
end if
end operation.

—
> IRISA

An introduction to the implementation of concurrent objects 37

A very simple wait-free object: the Splitter (4)

LAST «— 1 DOOR « closed LAST =1

\1/ v \V =

. No process has modified LAST
VT LT =Y

—
— IRISA An introduction to the implementation of concurrent objects 38

Obstruction-free counter (1)

Weak timestamp generator which provides processes with
a single operation denoted get timestamp() which returns an
natural integer

e Validity. No two invocations of get_timestamp() return the
same value

e Consistency. Let gt1() and gty() be two distinct invo-
cations of get timestamp(). If gt1() returns before gty()
starts, the timestamp returned by gt,() is greater than
the one returned by gt ()

e Termination. Obstruction-freedom

—
~ IRISA

An introduction to the implementation of concurrent objects 39

Obstruction-free counter (2)

e NEXT: value of the next timestamp, initialized to 1
e LAST: unbounded array of atomic registers

A process p; deposits its index ¢ in LAST[k] to indicate
it is trying to obtain the timestamp k&

e COMP: unbounded array of atomic Boolean registers
initialized to false

A process p; sets COMP[k] to true to indicate that it is
competing for the timestamp k&

—
— IRISA An introduction to the implementation of concurrent objects 40

Obstruction-free counter (2) How do processes communicate?

operation get timestamp(i) is

k «— NEXT; Shared memory models
repeat forever

LASTI[k] + 1;

if (-COMPIk]) e Base read/write model

then COMP[k] < true;
if (LAST[k] =1)

Base read/write model enriched with specific operations

entdh(iefn NEXT « NEXT + 1; return(k) * Swap (local/shared), Test&Set, Fetch&Add, etc.
end if * Compare&Swap, LL/SC, etc.
kEe—k+1 * Herlihy’'s Hierarchy on the synchro power of base op-

end repeat erations define a hierarchy of shared memory models

end cperation.

>> IRISA An introduction to the implementation of concurrent objects 41 >> IRISA An introduction to the implementation of concurrent objects 42
Compare&Swap: definition Using Compare&Swap
statements;
old — X;
X .compare&swap(old, new) is any sequence of statements possibly
if (X = old) involving accesses to the shared memory;
then X < new; return(true) if X.compare&swap(old, new)
else return(false) then statements S1
end if. else statements S2
end if;
statements.

— —
— IRISA An introduction to the implementation of concurrent objects 43 — IRISA An introduction to the implementation of concurrent objects 44

Compare&Swap: the ABA prcblem

e Initially X = a
e At time 71: p; reads a from X

e At time 7 > 74
p; successfully executes X.C&S(a,b) (X =)

e At time 73 > mo:
p; successfully executes X.C&S(b,a) (X = a)

e At time 74 > 73:
p; successfully executes X.C&S(a,b) and erroneously be-
lieves that X has not been modified by another process
in the interval [r1..74]

—
— IRISA An introduction to the implementation of concurrent objects 45

Sclving the ABA procblem

Associate a new sequence number with every X.C&S

e X is now a pair (a, sn)

e At time 7q:
p; reads (a,sn) from X

e At time 7 > 74
p; successfully executes X.C&S({a, sn), (b,sn + 1))

e At time 73 > 75!
py, successfully executes X.C&S((b, sn + 1), (a, sn + 2))

o At time 74 > 73:
when p; executes X.C&S({(a,sn),(c,sn + 1)), the write
into X fails and returns false to p;

—
— IRISA An introduction to the implementation of concurrent objects 46

Non-blocking cbjects based cn Compare&Swap

e Non-Blocking Queue Based on Read/Write Registers
and Compare&Swap:

- Michael M.M. and Scott M.L., Simple, fast and practical blocking and non-
blocking concurrent queue algorithms. Proc. 15th Int’'l ACM Symposium on
Principles of Distributed Computing (PODC’'96), ACM Press, pp. 267-275,
1996

This implementation was included in the standard Java
Concurrency Package

° tNon—BIocking Stack Based on Compare&Swap Regis-
ers

- Shafiei N., Non-blocking array-based algorithms for stacks and queues. Proc.
11th Int’'l Conference on Distributed Computing and Networking (ICDCN’'09),
Springer Verlag, LNCS #5408, pp. 55-66, 2009

Uniform presentation of the previous objects and other objects in Concurrent Pro-
gramming: Algorithms, Principles and Foundations, Springer, 515 pages, 2013

—
— IRISA An introduction to the implementation of concurrent objects 47

A wait-free stack (1)

e Based on Fetch&Add and Swap operations

e Uses:

* REG[0..00): array of atomic registers which contains
the elements of the stack.

REG[0] contains always the value 1 (used only to
simplify the description of the algorithm)

x NEXT: atomic register containing the index of the
Qexic entry where a value can be deposited, initialized
o)

- Afek Y., Gafni E. and Morisson A., Common?2 extended to stacks and unbounded
concurrency. Distributed Computing, 20(4):239-252, 2007

—
— IRISA An introduction to the implementation of concurrent objects 48

A wait-free stack (2)

operation push(v) is
in «— NEXT fetch&add() — 1;
REG[in] « v;
return()

end operation.

operatiocn Q.pop() is
last — NEXT — 1;
for x from last to O do
auxr «— REG|[x].swap(L);
if (auz # 1) then return(auz) end if
end for,
return(empty)
end operation.

—
— IRISA An introduction to the implementation of concurrent objects 49

Part V

Hybrid Implementations

The aim is here to design object implementations
merging locks and mutex-freedom

—
— IRISA An introduction to the implementation of concurrent objects 50

Types of hybrid implementations

e Static hybrid

*x Some operation implementations are wait-free, other
are lock-based

* Example: a concurrent set
e Dynamic hybrid (context sensitive)

* Define a notion of favorable circumstances
(wrt failures, concurrency, etc.)

x And the implementation of the operations must not
use locks in favorable circumstances

—
— IRISA An introduction to the implementation of concurrent objects 51

Static hybrid set

e Operations
* S.add(v) adds v to the set S and returns true if v was
not in the set; Otherwise it returns false

* S.remove(v) suppresses v from S and returns true if v
was in the set; Otherwise it returns false

* S.contain(v) returns true if v € S and false otherwise

e Static hybridism

* S.add() and S.remove(): lock-based but deadlock-free
* S.contain():mutex-free and wait-free

- Heller S., Herlihy M.P., Luchangco V., Moir M., Scherer W.III and Shavit N., A lazy
concurrent list-based algorithm. Parallel Processing Letters, 17(4):411-424, 2007.

—
— IRISA An introduction to the implementation of concurrent objects 52

internal Representaticn

e linked list pointed to by HEAD
e A cell of the list (say NEW CFELL) is made up of

*

* NEW _CELL.val which contains a value (element of
the set).

* NEW _CELL.out. Boolean set to true when the corre-
sponding element is suppressed from the list

* NEW CFELL.lock: lock used to ensure mutual exclu-
sion (when needed) on the cell

x NEW _CFELL.next: pointer to the next cell.

—
— IRISA An introduction to the implementation of concurrent objects 53

Initial state

e The set is organized as a sorted linked list

e All operation algorithms are based on list traversal

wpap [F—=J T T+=1"11 /]

—
— IRISA An introduction to the implementation of concurrent objects 54

Operation S.remove(v): behavior

(L[d=ll A=l [[=] [[]

HEAD $2 51
S DNGE

pred; curr;

—
— IRISA An introduction to the implementation of concurrent objects 55

Operation S.remove(v): algorithm

operation S.remove(v) is
pred «— HEAD; curr «— (HEAD |).next;
while ((curr |).val < v)
do pred < curr; curr < (curr |).next end while;
((pred |).lock).acquire lock(); ((curr |).lock).acquire lock();
valid «— false;
if validate(pred, curr)
then valid « true; pres « ((curr |).val = v);
if (pres) then (curr |).out « true;
(pred |).next < (curr |).next
end if
end if;
((pred |).lock).release lock(); ((curr |).lock).release lock();
if (valid) then return(pres) else restart the operation end if
end operation.

—
— IRISA An introduction to the implementation of concurrent objects 56

Validaticn predicate

internal predicate validate(pred, curr) is
let res = (= ((pred |).out)
A = ((curr |).out)
A ((pred |).next = curr));
return(res)
end internal predicate.

—
— IRISA An introduction to the implementation of concurrent objects

57

Operation S.add(v): behavior

[(+—I 1=l <=l [[=] [[]

HEAD 6o
S1
E OEGEE
pred; curr; NEW _CELL
—
[- IRISA An introduction to the implementation of concurrent objects 58

Operation S.add(v): algorithm

operation S.add(v) is

pred «— HEAD; curr < (HEAD |).next;
while ((curr |).val < v)

do pred < curr; curr < (curr |).next end while;
((pred |).lock).acquire lock(); valid < false;
if validate(pred, curr)

then valid < true; to_add «— ((curr |).val # v);

if (to_add) then S.add new cell() end if

end if;
((pred |).lock).release lock();

if (valid) then return(to_add) else restart the operation end if

end operation.

—
— IRISA An introduction to the implementation of concurrent objects

Internal operation S.add _new_cell(): algorithm

internal operation S.add new cell() is
NEW _CELL <« new_cell();
NEW _CELL.out < false;
NEW _CELL.val < v;
NEW _CELL.next < curr;
NEW _CELL.lock < open,;
(pred |).next — (1 new_cell)
end internal operation.

—
— IRISA An introduction to the implementation of concurrent objects 60

Operation S.contain(v): behavior

pred; curr;

—
— IRISA An introduction to the implementation of concurrent objects 61

Operation S.contain(v): algorithm

operation S.contain(v) is
curr «— HEAD:;
while ((curr |).val < v) do curr < (curr |).next end while;
let res = ((curr |).val = v) A (=(curr |).out);

return(res) end operation.

—
— IRISA An introduction to the implementation of concurrent objects 62

A dynamic hybrid consensus cbject

e Consensus object

* Validity. A decided value is a proposed value

* Agreement. NO two processes decide different values
* Termination. Any invocation of propose() terminates
* Binary consensus: only O and 1 can be proposed

e Favorable circumstances: when there is no concurrency
or the participating processes propose the same value

- Taubenfeld G., Contention-sensitive data structure and algorithms. Proc. 23th Int’l
Symposium on Distributed Computing (DISC’09), Springer Verlag, LNCS #5805,
pp. 157-171, 2009

—
— IRISA An introduction to the implementation of concurrent objects 63

Underlying implementation objects

e PROPOSEDI0..1], which is an array of two Boolean reg-
isters, both initialized to false. The atomic register
PROPOSED|v] is set to true to indicate that a process
has proposed value v.

e DECIDED: atomic register whose domain is {L,0,1}.
Initialized to 1, it eventually contains the value that is
decided (and never the value which is not decided)

e AUX: atomic register whose domain and initial value
are the same as for DECIDED

e LOCK: starvation-free lock

—
— IRISA An introduction to the implementation of concurrent objects 64

Dynamic hybrid implementation of binary consensus

operation C.propose(v) is

PROPOSED[v] « true; if (AUX = L) then AUX « v end if;

if (-PROPOSEDI[1 — v])
then DECIDED «— v
else if (DECIDED = 1)
then LOCK .acquire_lock();
if (DECIDED = 1)
then DECIDED «— AUX
end if;
LOCK .release lock()
end if;
end if;
return(DECIDED)
end cperatiocn.

—
— IRISA An introduction to the implementation of concurrent objects

65

Part VI

Abortable objects

—
> IRISA

An introduction to the implementation of concurrent objects

66

Ccncurrency abortable cbject

e Any invocation of an object operation

* Returns after a bounded number of steps (shared

memory accesses) and

* is allowed to return the default value L in presence
of concurrency (then the object has not been modi-

fied)

e Can be generalized: An operation is allowed to return

1 only in “unfavorable circumstances”

—
— IRISA An introduction to the implementation of concurrent objects

Illustrating space-time diagram

inv3 inva

p1

invy

D2

invy : o invs L inve

p3 ‘ ‘
v v

_—

no concurrency

Vv vy VYo v
_——=

no concurrency

—
— IRISA An introduction to the implementation of concurrent objects

68

A non-blocking abortable bounded stack (1)

e The stack is of size k
e Operation push(v)

* returns full if the stack is full, otherwise
*x adds v to the top of the stack and returns done

e Operation pop()
* returns empty if the stack is empty, otherwise

* suppresses the value from the top of the stack and
returns it

—
— IRISA An introduction to the implementation of concurrent objects 69

A non-blocking abortable bounded stack (1)

In presence of concurrency

e Operation invocations may return L (abortable object)

e But at least one returns a non-_1 value (non-blocking)

—
— IRISA An introduction to the implementation of concurrent objects 70

Stack representation (1)

e An array STACK[O..k] of atomic registers
eVzx: 0<xz<k: STACK|x] has two fields

* STACK [z].val contains a value

* STACK [z].sn contains a seq number (used to prevent
the ABA problem on this register)

It counts the nb of successful writes on STACK [x]

Vz: 1<z<k: STACK[z] initialized to (L,0)
e STACK|[O] always stores a dummy entry (init to (L, —1))

—
— IRISA An introduction to the implementation of concurrent objects 71

Stack representation (2)

e A register TOP that contains the index of the top of
the stack plus the corresponding pair (v, sn)

e TOP initialized to (0, L, 0)
e Both STACK [z] and TOP are modified with Compare&Swap

—
— IRISA An introduction to the implementation of concurrent objects 72

Principle: laziness + helping mechanism

e A push or pop operation

*x updates TOP, and

* leaves to the next operation the corresponding update
of the stack

Hence it helps the previous (push or pop) operation
by modifying the stack accordingly

Shafiei N.,
Non-blocking Array-based Algorithms for Stacks and Queues.
Proc. th Int'l Conference on Distributed Computing and Networking (ICDCN'09),

Springer Verlag LNCS #5408, pp. 55-66, 2009

—
— IRISA An introduction to the implementation of concurrent objects 73

Abortable push: weak push()

operation weak push(v):
(index, value, seqnb) «— TOP;
help(index, value, seqnb);
if (index = k) then return(full) end if;
sn_of next «— STACK [index + 1].sn;
newtop «— (index + 1,v,sn of next+ 1);
if TOP.C&S((index,value, seqnb), newtop)
then return(done) else return(L) end if.

—
— IRISA An introduction to the implementation of concurrent objects

T4

Abcrtable stack: help prccedure

procedure help(index, value, seqnb):
stacktop < STACK [index].val,

STACK [index].C&S((stacktop, seqnb — 1), (value, seqnb)).

—
— IRISA An introduction to the implementation of concurrent objects 75

Abortable pop: weak_pop()

operation weak pop():
(index, value, seqnb) «— TOP;
help(index, value, seqnb);
if (index = 0) then return(empty) end if;
belowtop «+ STACK [index — 1];
newtop «— (index — 1, belowtop.val, belowtop.sn + 1);
if TOP.C&S({(index,value, seqnb), newtop)
then return(value) else return(L) end if.

—
— IRISA An introduction to the implementation of concurrent objects

76

From an abortable to a non-blocking stack

operation non_blocking _push(v):
repeat res «— weak push(v) until res # 1 end repeat;

return(res).

operation non_blocking _pop():
repeat res «— weak pop() until res # | end repeat;

return(res).

From Non-blocking abortable to Starvation-freedom (1)

e Object operations: denoted ABO.ab_oper(par)

CONTENTION: atomic Boolean read/write register, ini-
tialized to false.

Used to indicate that there is a process that has acquired
the lock and is invoking ABO.ab_oper()

e LOCK: a starvation-free lock

An introduction to the implementation of concurrent objects 78

—
> IRISA

>> IRISA An introduction to the implementation of concurrent objects 77
From Non-blocking abortable to Starvation-freedom (2) Part VII
operation oper(par) is
if (CONTENTION)
then res « ABO.ab_oper(par);
if (res # 1) then return(res) end if
Conclusion

end if;

LOCK .acquire SF lock();
CONTENTION <+ true;
repeat res «— ABO.ab_oper(par) until res # | end repeat;

CONTENTION <« false;

LOCK .release _SF _lock();

return(res)

end operation.

An introduction to the implementation of concurrent objects

—
~ IRISA

An introduction to the implementation of concurrent objects 80

—
~ IRISA

What dc we have visited?

Concurrent objects

Different types of objects

e Safety vs liveness

e Lock-based vs mutex-free implementations
e Notion of a hybrid implementation

e Abortable objects

e Systematic transformations

—
— IRISA An introduction to the implementation of concurrent objects

81

