A Programming Language Perspective
on Transactional Memory Consistency

Hagit Attiya, Technion

Joint work with Sandeep Hans,
Alexey Gotsman, Noam Rinetzky

Research funded by the European Union's 7t Framework Programme
(FP7/2007-2013) under grant agreement n° 238639 — MC-TRANFORM.

__:;EEE__ Theoretical Foundations of Transactional Memory

FFFFFFF

Transactional Memory (TM)

* Atomic blocks (accessing
transactional variables)

— Appear to execute atomically

— May abort

* Local variables
(also inside blocks)

 Global variables
(only outside blocks)

[Herlihy & Moss 93]

node := new(StackNode);
node.val := val;
result :-= abort;
while(result == abort){
result = atomic{
node.next =
Top.read();
node.val++ ;
Top = node;

(W)

3
9

val ;

TM Consistency Condition

e How should the TM implementation behave?

 No single answer...

TM Consistency Conditions
Opacity VWC

[Guerraoui & Kapalka 08]

Virtual World Consistency
[Imbs & Raynal 09]

TMS1 / TMS2
[Doherty, Groves, Luchangco, Moir 09]

What is the “right” condition?

But we are
not social
scientists

"al

Observational Refinement
[He, Hoare, Sanders 86]
Preserve the observations of a client program,
when an abstract library implementation is
substituted with a concrete one

Client
[LIB, J----- Program

Our work uses observational refinement as a
yardstick to evaluate TM consistency conditions

5

Interactions of a Program using TM

e Local actions: access only the local variables
* Global actions: interact with other client programs
* |nterface actions: interact with TM

node := new(StackNode);

node.val := val; .
. result := abort; Client
txbegm -
4 \\12222222233333:Whlle(result == abort){ Program
oK result := atomic{
- call | node.next =
TM ret /abort | Top.read();
node.val++ ;
_ j% Top = node;
ret / abort }
ks

—

6

Interactions of a Program using TM

History: Finite sequence of interface actions
e e e e N N =

req req res res req req req res res req req
Transactional System (TM): set of histories

node := new(StackNode);

node.val := val; .
: result := abort; Client
beg\n -
a \% while(result == abort){ Program
oK result := atomic{
- call | node.next =
TM ret /abort | Top.read();
node.val++ ;
& //‘“‘Q@QHHHE-~_ Top = node;
ret / abort 3}

3
g

= val;

More than Just TM

Trace: includes also local and global actions
— =P P —p——mp = —»—»—» ———

val:=8 val:=9 val:=3

node := new(StackNode);

node.val :-= val; .
: result := abort; Client
beg\n -
a \% while(result == abort){ Program
oK result := atomic{
- call | node.next =
TM ret /abort | Top.read();
node.val++ ;
8 J/“‘QggﬂunﬂL‘_N Top = node;
ret /abort }
ks

g := val;

Trace Equivalence

Trace: includes also local and global actions
— =P P = = —»—»—» ———

val:=8 val:=9 val:=3

Two traces are observationally equivalent t ~ v’
if threads see the same sequence of local values

TM_ observationally refines TM, if
every trace t with history in TM,
has a trace 1’ ~ T with history in TM,

Why Observational Refinement?

Prove properties of TM,
and deduce same
properties for TM

Traces interacting =t
with TM

Traces
interacting <’
with TM,

TM_ observationally refines TM, if
every trace t with history in TM
has a trace 1’ ~ T with history in TM,

Abstract System for Opacity

Complete history: all transactions commit / abort

commit or abort

Sequential history: no interleaving of transactions
Legal history: read from committed transactions

TM jromic: @ll sequential and legal histories

11

Opacity
History His opaque if we can [Guerraoui & Kapalka 08]

— Complete H

— Find a permutation S of H that is sequential, legal
and preserves the real-time order of H

——

= =P —p =P =P =P =P =P =P =P =P completion of H

* sequential, legal
 preserves real-time order
—ﬁ

TM is opaque if every history in TM is opaque

12

Opacity Relation
HES
S preserves the per-thread and real-time order of H

TM.E TM,
for every HeTM., HE S, for some SeTM,

coO .;i% :hWwEh;W‘i‘WWW

— = e = = = = = — =—

TM isopaque <~ TM.E TMomic

Opacity Relation vs. Linearizability

Linearizability: consistency condition for library calls

— client is suspended when waiting for a response

Observational refinement for linearizability

[Filipovic, O'Hearn, Rinetzky, Yang 09]

req res req res

> . . —— = —— —— = —— = —p = =l m— —— =]
req res req res

¢ For opacity relation, we need to do more...
s R e S e e T

e

14

— s
— s
— s

Main Result

TM. E TM, < TM_ observationally refines TM,

e global variables can be accessed,
but only outside atomic blocks

result := atomic{ result = atomic{
(returns1) 1 =g ; g :=1;
write(l,tx) g read(tx) ; (returns 1)
+

y

15

Main Result

TM. E TM, < TM_ observationally refines TM,

e global variables can be accessed,
but only outside atomic blocks

e finite histories

* no nesting of atomic blocks

16

Soundness: C is Sufficient

Assume TM. E TM, and prove that a trace t observed
with TM. has an equivalent trace t" observed with TM,

TN - T

history € TM history e TM,

¥ i
T - I

trace trace

* Consider a trace T whose history H is in TM.
e TM.ETM,=HES for some history S in TM,
From t and S, get a trace v’ ~ t of TM, whose history is S

17

Soundness: C is Sufficient

Assume TM. E TM, and prove that a trace t observed
with TM. has an equivalent trace t" observed with TM,

TN - T

history € TM history e TM,

¥ i
T - I

trace trace

¢ Two traces are equivalent if they have the same order
for same-thread actions and for global actions

18

Soundness: C is Sufficient

Assume TM. E TM, and prove that a trace t observed
with TM. has an equivalent trace t" observed with TM,

TN - T

history € TM history e TM,

¥ i
T - I

trace trace

¢ Inductively permute 1 to get t/, while preserving the
order of same-thread and global actions

19

Soundness: Inductive Step

Assume we have permuted a prefix of T so its history is a
prefix of a history in TM,

I D =y R —

history € TM history S € TM,

¥ i
I | - B

trace

“ Locate ¢, the next interface action in S, and move it

¢ Reordering ¢ relative to earlier actions may violate
equivalence

20

Soundness: Inductive Step

Assume we have permuted a prefix of T so its history is a
prefix of a history in TM,

I D = P

history € TM history S € TM,

])
I) ~
Proceed

trace
Locate ¢, the next interface action i With
Caution!

¢ Reordering ¢ relative to earlier actions
equivalence

21

Inductive Step: Case 1
¢ # txbegin by thread t

history S € T™M
only local Y A
actions by t ﬁ

22

Inductive Step: Case 2
¢ = txbegin by thread t

- history S € TM
no interface Y=< 1
actions by t ﬁ

trace actions outside actions

transactions inside
transactions

(none by t)

23

Example: E is Necessary

whille (g <> 1) ;

result = atomic{
node.next =

Top.read();
node.val++ ;
Top = node;

}

}

y

24

result := atomic{
node.next =

Top.read();
node.val++ ;
Top = node;

y

Completeness: = is Necessary

TM.ETM, < TM_,observationally refines TM,

* For every history H, construct a program P,
ensuring the opacity relation

e |.e., the real-time order between transactions in
every trace of P, must agree with the real-time
order of the transactions in H

¢ Use global variables & leaking of local variables

25

Leaking Information from
Aborted Transactions

Completeness result assumes we can read
local state of aborted transactions

From ScalaTM Quick Start D
Be careful about rollback

ScalaSTM might need to try an atomic block more than once before optimistic
concurrency can succeed. Any call into the STM might potentially discover the failure
and trigger the rollback and retry| Local non-ref variables that have a lifetime longer
than the atomic block won't be rolled back, and so they should be avoided.|Local
variables used only inside or only outside the atomic block are fine, though.

Below, badTostring is incorrect because it uses a mutable stringBuilder both outside
and inside its atomic block. The return value will definitelv mention all of the elements

26

Weaker Observations,
Weaker Consistency Conditions

e When local variables are rolled back after a
transaction aborts, TMS1 may suffice
— |/O automata based definition

— In TMS, the validity of each response is checked against
a “coherent” subset of the transactions

— May include commit-pending transactions ,ﬁ

3.2. Why TMS1 enables transactional programming WORK IN PROGRESS

The purpose of TMS1 is to specify what guarantees the TM runtime must make in order to ensure that pro-
grammers who think about their programs as if only serial executions (i.e., executions in which the events of each
transaction appear consecutively) are possible do not receive any unpleasant surprises as a result of the concurrent
execution of transactions. We explain below how TMS1’s validation conditions ensure that all responses given
by the TM runtime are consistent with some serial execution of the program. In particular. for each response. we
describe how to transform the actual program execution into a serial execution (i.e., one in which transactions
are not interleaved with each other) such that the program cannot distinguish between the actual execution and
the constructed serial execution.

First consider a commitOk or abort response that occurs when there are no other commit-pending transac-

27

What We Know about VWC

Sequence-based definition

e Each aborted transaction is checked
for consistency (separately)

If atomic blocks return abort / commit

(typically assume
not preserve eve

VWC suffices if tl
codes or just one
thread and no gl

\k)c?(\w

o< OQ“"SS'

tmpO = commit;
tmp0 :-= atomic{
read tx ;
write ty ;
ks
iIf (tmp0 == abort)
gv = 1 ;
tmpl = atomic{
tz =1 ;
ks

tmp3 = gv ;
result = atomic{
tmp4 = read(tz)
iIf ((tmp3 == 1)
or (tmp4 == 1))
1111

Future Work

* infinite histories
* nesting
e access global variables inside atomic blocks (?)

* mixing transactional and non-transactional
accesses

Possibly by considering other consistency conditions
(TMS2, DU-Opacity)

29

Thank You

