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1. Introduction
Twenty years after the initial proposal [4], hardware transactional
memory is becoming commonplace. All commercial versions to
date—and all that are likely to emerge in the near future—are best
effort implementations: a transaction may abort and retry not only
because of an actual data conflict with some concurrent transaction,
but also because of limitations on the instructions that can be
executed, the time that can be consumed, or the size or associativity
of the space used to buffer speculative reads and writes.

As programmers begin to write programs with transactions—
particularly large transactions—scaling problems will be inevitable,
and we can expect growing demand for programming techniques
that minimize transaction conflicts and hardware overflow. This
abstract introduces one such technique. It exploits the common
pattern in which (1) a transaction spends significant time “figuring
out what it wants to update” before actually making the updates,
and (2) the decision as to what to update can be checked for cor-
rectness more easily than it could be computed in the first place.
A transaction that satisfies these properties can then be partitioned
into a planning phase and an update phase: the planning phase
determines what to update; the update phase double-checks the
correctness of the plan and performs it. The planning phase can
often be performed in ordinary code; the update phase remains a
true transaction. Information is passed between the two in the form
of a validator object that encapsulates a description of the desired
update (the plan) and whatever information is needed to confirm its
continued correctness.

Partitioned transactions (ParT) complicate the creation and use
of concurrent objects, but not dramatically so. Consider a sorted
linked list, where each operation begins by scanning the entire sub-
list from the head to the neighborhood of a given key. In a naive im-
plementation, a transaction will abort if another thread updates any
element of the already-scanned sublist. If every element indicates
the list to which it belongs, however, then the neighborhood of a key
is self evident once found, and we can effect a dramatic reduction in
conflicts by separating the scan from the update. Transactional calls
to L.insert(x), for example, would be replaced by L.insert plan(&v, x);
L.insert update(v). With a bit of care, the planning phase can be per-
formed in ordinary (nontransactional) code. It initializes the val-
idator object v, which contains both x and a pointer to a node in
the to-be-modified neighborhood. The update phase (a transaction)
subsequently confirms that the pointer still indicates the right place
in the right list, and then makes the appropriate changes.

In a more computational vein, consider a transaction that sets
y = f(a, b, c); x = y, where a, b, c, and x are shared variables, and f
is a time-consuming function. We can significantly reduce the time
in which the transaction is subject to conflict by computing y = f(a,
b, c) nontransactionally; passing a validator containing a, b, c, and
y; and making the update transaction the equivalent of an n-word
compare and swap. If it is essential to the correctness of f that a, b,
and c be consistent, we can put the three reads in a transaction.

For common operations, partitioning can lead to dramatically
lower abort rates and higher scalability. We have confirmed these
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benefits on a 16-core TM-capable IBM zEnterprise EC12 main-
frame and a 4-core Intel Haswell machine. Our experience further
indicates that a key advantage of transactional synchronization—
namely, composability—continues (with certain caveats) to hold
for partitioned transactions.

Unlike early release [5], elastic transactions [1] and composing
relaxed transactions [3], partitioned transactions are compatible
with existing HTM. They induce a model in which the programmer
highlights the data that a transaction needs, rather than the data that
it doesn’t. Mechanically, partitioned transactions resemble the split
hardware transactions of Lev et al. [8], but instead of a low-level
mechanism to accommodate nested transactions, they offer a high-
level (program-specific) technique to reduce transaction aborts. For
our part, we view partitioned transactions as a follow-on to manual
speculation [12]. Where that work sought to reduce critical path
length in programs based on mutual exclusion, the current work
aims to increase success rates in programs based on speculation.

2. Partitioning
Plan-then-update operations, which cluster most of their writes to-
ward the end of the operation, are ubiquitous in multithreaded pro-
grams, and can be expected to comprise many of the transactions
on an HTM-capable machine. Partitioned Transactions(ParT) ex-
ploit this programming pattern by observing that the planning phase
need not be executed in the same transaction as the update, so long
as the plan is still valid when the update occurs.

2.1 The Programming Model
A partitioned transaction comprises three components:
(1) a Planning method that “figures out what to do” and embeds
the result in a validator object. The plan may execute either in
ordinary (nontransactional) code—as in manual speculation [12]—
or in an HTM transaction. In the former case, the programmer must
assume responsibility for issues arising from potential data races,
stale pointers, or ABA problems. Since plans are speculative, and
may fail or be executed multiple times, they must not change the
(high-level, semantic) value of shared data.
(2) a Validation method for the validator object that confirms
the continued efficacy of the plan that the object embodies. The
choice of validation strategy is flexible and algorithm-dependent;
we describe several common patterns in Section 2.2.
(3) an Update method, executed as a transaction, that effects the
actual changes to shared data. To ensure the atomicity of the over-
all operation, the update phase begins by calling the validation
method. If validation fails, the update phase must abandon the plan
and switch to a fallback code path.

Consider the general search-then-modify operation in Figure 1a,
in which the goal of search is to locate the position (pos) at which
to make a modification. Instead of placing the whole operation in
a single transaction, we can partition the transaction as shown in
Figure 1b. The planning phase (search plan) places position infor-
mation (pos) in validator object v, which has an is valid method to
confirm whether pos is still the right place for modification. If vali-
dation succeeds in the update phase (atomic region), pos is modified
(line 9); otherwise, a fallback path is taken (line 11).



1 atomic {
2 pos = search()
3 modify(pos)
4 }

(a) Original transaction

5 validator v;
6 search plan(&v)
7 atomic {
8 if (v.is valid())
9 modify(v.pos)

10 else
11 ... // fallback path
12 }

(b) ParT

Figure 1: A transaction (a) and its ParT equivalent (b).

As long as is valid is correctly implemented, the code in Fig-
ure 1b is semantically equivalent to the original version: by return-
ing true at line 8, is valid asserts that pos is the position that would
be found by a fresh call to search.

2.2 High-level Validation
Several validation strategies are possible in ParT. Perhaps the most
obvious is to double-check the values of all data read in the plan-
ning phase. This is essentially the strategy of Split Hardware Trans-
actions [8]. Conceptually, it transfers the whole read set of the plan-
ning phase over to the update transaction. Consistency is trivially
ensured at the implementation level. For compute-heavy planning
phases, this strategy may be entirely appropriate: for these, the main
purpose of ParT is to reduce the temporal window in which the
transaction is vulnerable to spurious (e.g., false sharing) conflicts.
Unfortunately, for search-heavy planning phases, passing the full
read set may make the update transaction as likely to abort as the
original monolithic transaction.

Complete consistency of all read locations is not always re-
quired for high-level correctness, however: the data to be modified
may depend on only a portion of the read set, or on some property
that does not always change when the values of the data change. In
search structures, for example, it is often possible to verify, locally,
that a location is the right place to make an update: how one found
the location becomes immaterial once it has been found. Local ver-
ification may even succeed when local values have changed. Again
in a sorted list, if the planning phase suggests inserting key k af-
ter node X , and passes a pointer to X in the validator object, the
update phase may succeed even if another node has already been
inserted after X , so long as k still belongs between the two.

In other cases, application-specific version numbers can be
used to concisely capture the status of natural portions of a data
structure. We found such numbers effective, at various granular-
ities, in our work on manual speculation [12]. Seen in a certain
light, application-specific version numbers resemble the ownership
records (ORecs) of a software TM system. They protect the entire
read set, but allow rapid validation by employing a data-to-Orec
mapping specifically optimized for each individual structure.

2.3 Applying ParT to HTM
Partitioned Transactions allow us to overcome the limitations of
best-effort HTM in important situations. To realize this potential,
the following issues and trade-offs must be considered.

Software vs. hardware speculation. The planning phase of ParT
can be done either in software or in a hardware transaction. Doing
it in software is often preferable, as it avoids placing the touched
data in HTM’s read set, sidestepping HTM’s capacity limits and
thereby reducing aborts. However, pure software-based planning
requires expert program knowledge [12] to handle potential data
races between nontransactional planning and transactional updates,
erroneous behaviors such as infinite loops, and ABA problems.

If these problems prove too daunting, planning can be placed
in its own hardware transaction. Doing so sacrifices certain bene-
fits, such as unbounded space and avoided conflicts on no-longer-

1 atomic {
2 operation0
3 operation1
4 ...
5 operationN
6 }

(a) One big transaction

7 op0 plan(&v0)
8 ...
9 opN plan(&vN)

10 atomic {
11 if (v0.is valid())
12 op0 update(v0)
13 else
14 ... // fallback path 0
15 ...
16 if (vN.is valid())
17 opN update(vN)
18 else
19 ... // fallback path N
20 }

(b) CParT transaction

Figure 2: Composing speculation work for a big transaction
through Composable Partitioned Transactions.

needed data, but programming becomes quite a bit simpler, and
given an appropriate validator, performance may still be signifi-
cantly better than it was with the original, monolithic transactions.
Once transactional planning has been summarized by a validator,
conflicts on much of the read set may no longer be a threat to the
success of the update transaction. If the validator has a low proba-
bility of failure, an aborted update transaction may even be able to
retry without re-running the planning phase.

Validation granularity. Fine-grain, local validation minimizes
the chance of spurious aborts. Coarse-grain (e.g., version-number-
based) validation may execute more quickly, because it has less to
check. Application-specific knowledge and experimentation may
be required to find the best point in the design space.

Fallback strategy. When validation fails, two kinds of fallback
are possible. One immediately terminates the update transaction
and jumps back to the planning phase, in the hope that a retry is
likely to succeed; we call this aggressive fallback. The other exe-
cutes the entire operation—both the planning and update phases—
within current transaction; we call this conservative fallback. If
failed validation is uncommon, the aggressive strategy is proba-
bly better: the second try is likely to succeed, and to benefit from
partitioning.

3. Composition
Transactions in real applications often comprise multiple opera-
tions, which need to compose with one another. Most previous
efforts[2, 10] to optimize composable operations are incompatible
with current HTM. ParT does work with HTM, and (with certain
caveats) supports composability.

Consider a transaction that needs to perform N operations,
in some order. For the moment, suppose that no operation reads
locations written by a predecessor. The obvious way to achieve
atomic execution is to enclose these operations in a big hardware
transaction (Figure 2a).

When executing on current best-effort HTMs, such a big trans-
action may suffer from several problems. Though there may be
sufficient hardware resources to finish each individual operation,
there may not be enough to accommodate the read and write sets
of all the operations together. The long execution window also in-
creases the likelihood or aborting due to external events such as
context switches and interrupts. Even on an unbounded system like
VTM[11], the length of the transaction would likely increase the
rate of conflict with other threads.

Given a big transaction containing multiple operations, each of
which has a ParT implementation, we can extract and combine
the planning phases into a single planning phase, followed by a



single update phase. We call this idiom Composable Partitioned
Transactions (CParT). To pass information from the planning phase
to the update phase, we employ a set of validators, one for each
operation. Returning to the example of Figure 2a, we can use
ParT implementations of the constituent operations to construct
the code of Figure 2b, which contains a composed planning phase
(lines 7–9) and a composed update transaction (lines 10–20). Every
validator in the update transaction is verified and backed by a
separate fallback path.

3.1 Benefits
Shrunken read/write set. If the read sets of N transactions are
(mostly) disjoint, the read set of their naive composition will be
N times the average size M of any one of them alone. In CParT,
with application-specific (typically local) validation, we can often
reduceM to some small constant c, leading to a composed footprint
that is linear in N . Since M often varies with input, while c
does not, the read set size in a CParT program may also be more
predictable, making it easier to model and analyze performance.

Lower overall conflict rate. The smaller memory footprint and
shorter temporal duration of a ParT transaction, relative to the
monolithic transaction it replaces, can provide a significant reduc-
tion in the likelihood of conflict. This benefit is compounded by
composition. A monolithic transaction T that includes operation O
is vulnerable to abort if any other thread makes a conflicting access
to O’s data during any part of T . In CParT, O’s planning phase
(if executed in a transaction) can abort and retry independently of
planning for the rest of T . The “shared vulnerability” of O and its
peer operations is limited to the update transaction, which is typi-
cally much shorter than the original version of T . Moreover, if an
update transaction aborts due to an external condition, CParT can
retry it without re-executing the planning phase.

Fast re-execution. When validation of the plan for operation O
fails within the CParT update transaction for composed operation
T, we can generally arrange, in the fallback path, to re-execute only
the planning phase of O before trying the update again. Shorter
turn-around times in turn are likely to increase throughput. A sim-
ple example can be seen in transactions that end with a reduction
(e.g., the update of a global sum). Unlike a monolithic composed
transaction, a CParT update transaction that aborts due to conflict
on a reduction variable can generally salvage the planning phases
of everything else in the transaction. In effect, CParT allows us to
separate time-consuming low-contention work from any fast, high-
contention work that follows it, while still maintaining atomicity.

3.2 Dependences
Independent operations compose trivially: if operations A and B
share no data, then Aupdate and Bplan will safely commute with
one another, and (Aplan Aupdate) (Bplan Bupdate) will be equivalent
to (Aplan Bplan) (Aupdate Bupdate). Composition is slightly more
difficult ifBplan depends on the results ofAplan: here we must write
as Aplan(&v); Bplan(v.results); atomic {Aupdate Bupdate}.

The complicated case arises when Bplan depends on Aupdate.
One possible strategy is to require A’s validator to capture the in-
tended new state of A’s object, in a form amenable to querying
by Bplan. The principal disadvantage here is the need to instru-
ment any reads in Bplan that might need to see the new state—
arguably a violation of abstraction. Alternatively, we might provide
an undo operation for Aupdate, and then replace Bplan with atomic
{Aupdate Bplan Aundo}. This strategy avoids the need for query op-
erations inside Bplan, but it involves both extra coding effort and
extra run-time overhead. While neither of these strategies is per-
fect, we note that CParT is already a manual programming tech-

nique, so a certain amount of programmer effort in the interest of
composition may be acceptable.

3.3 Contention Management
3.3.1 Fallback Strategy
Every validation in an update transaction needs a fallback path in
case of failure. When Av fails (the is valid method returns false),
the aggressive strategy aborts the update transaction and returns to
Aplan, in the hope that partitioning will work the next time around.
The simpler, conservative strategy performs Aplan Aupdate in place,
within the update transaction (preserving both earlier plans and
earlier updates). This strategy works well if most operations are
independent of one other.

If there exists a long dependence chain, where each plan de-
pends on the output of one or more predecessors, a failed valida-
tion may negate all subsequent planning work. Under a conserva-
tive strategy, all plans in the chain will have to be re-executed in-
side the update transaction, and no benefit will be obtained from
CParT. To preserve as much work as possible, a mixed strategy can
be adopted: for operations close to the front of the chain (the begin-
ning of the update transaction), aggressive fallback is used to restart
a fresh planning phase, since little work is wasted by the abort; for
operations close to the tail of the chain, as the work lost to an abort
increases , conservative fallback is used instead.

3.3.2 Planning Transactions
We may execute the planning phase(s) of one or more CParT op-
erations in a hardware transaction in order to avoid the complexity
of software sandboxing (inconsistency tolerance). With the aid of
undo operations, we may also execute update, planning, and undo
operations together in a transaction to accommodate dependences.
Unlike an update transaction, a planning transaction should make
no semantically visible changes to shared data. In fact, it need not
even commit in some cases: an incorrectly initialized validator will
simply lead the update transaction down a fallback path.

The software surrounding most HTM systems falls back to
a global lock in response to repeated transaction aborts. Once a
thread acquires the lock, its operation becomes irrevocable. To en-
sure the atomicity of irrevocable operations, hardware transactions
typically add the lock to their read set, forcing them to abort if
a peer acquires the lock. Given the expense of the aborts and of
subsequent serialization, a small planning transaction may simply
choose to “give up” after a certain number of failures. That is, rather
than abort all current hardware transactions to become irrevocable,
it can defer to the fallback path of its update phase. The choice be-
tween the irrevocable and “give up” options could again be made
dynamically, based on run-time statistics.

4. Experiments
4.1 Platform
We have evaluated ParT on a TM-capable IBM zEnterprise EC12
mainframe server, in a virtual machine with 16 dedicated cores [6].

The TM run-time library uses global-lock-based irrevocable
execution as a software fallback. When a transaction aborts for a
reason the hardware deems “non-persistent,” we retry up to 8 times
before switching to irrevocable mode. On “probably persistent”
aborts, we retry no more than 5 times. Planning transactions are
handled in a similar way, except that the whole transaction is
skipped after a fixed number of retries for the reason described in
Section 3.3.2.

4.2 Microbenchmarks
For controlled assessment of basic overheads, we evaluated ParT
on sorted doubly-linked lists and red-black trees.
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Figure 3: Scalability of different DList implementations with (a)
small and (b) large key range on z. 50% insert, 50% remove.
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Figure 4: Throughput of red-black tree. The Y axis is the number
of operations per µs.

In the list microbenchmark, the planning phases of insert and re-
move operations search speculatively for the position at which the
key would belong, and save that position (a pointer to the last node
whose key is less than the given one) in the validator. Performance
results for different implementations appear in Figure 3. The three
curves represent pure HTM, ParT, and a partitioned implementation
in which the update phase comprises a lock-based critical section
rather than a transaction (ParLock). With 4 or fewer threads, which
run within a single processor, ParLock and ParT have similar per-
formance. As soon as threads have to synchronize across chips,
however, the lock can no longer compete. Pure HTM, for its part,
ends up falling back to a global lock for many of its transactions,
and doesn’t do well at all.

In the red-black tree, insert and remove operations start with a
tree search. To avoid the possibility that a speculative search will
find itself on the wrong branch of the tree due to a rotation, we per-
form the planning phase in a transaction of its own. At the end of
tree search, we keep in the validator a pointer to the last accessed
node. Space limitations preclude a detailed explanation, but local
validation based on this pointer is trickier than in the linked-list
case, and can fail when it “ought” to succeed about 25% of the
time, forcing execution down the fallback path. As shown in Fig-
ure 4, these “false negatives” cause ParT to lag slightly behind the
baseline HTM in single-thread runs. It wins in parallel runs. Gen-
erally, the benefit of ParT increases with the height of tree (due to
fewer data conflicts on the validator) and with the percentage of up-
date operations (due to faster re-execution of aborted transactions).

4.3 Macrobenchmarks
To understand the potential benefit of ParT and CParT in larger ap-
plications, we chose four macrobenchmarks from the STAMP [9]
and RMS-TM [7] benchmark suites. Genome, Intruder, and Vaca-
tion all contain composite transactions that we were able to recast
with CParT. UtilityMine is amenable to optimization with ParT, but
has no opportunities for composition. In effecting our transforma-
tions, we have taken care to preserve both the data structure layout
and the algorithms of the original code base.

A summary of performance results can be found in Figure 5. In
both Genome and Vacation, CParT results in significantly fewer
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Figure 5: Performance results of TM macro-benchmarks on IBM
zEC12. The Y axis is speedup over the sequential version.
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Figure 6: Performance results on Intel Core i7-4770.

hardware overflow aborts. In all four applications, ParT / CParT
results in significantly fewer conflict aborts. Additional benefits
results from the planning phase’s tendency to warm up the cache
for the update phase, which can then be even shorter (and thus
less likely to suffer conflict aborts). Similarly, Figure 6 illustrates
CParT’s performance advantage over the baseline HTM on a 4-core
Intel Haswell machine.

5. Conclusions
Based on our experiments to date, ParT and CParT seem likely
to be valuable additions to the “TM programmer’s toolkit.” Our
macrobenchmarks in particular suggest the possibility of dramatic
improvements in throughput—at least for some applications—on
state-of-the-art HTM. In future work, we are exploring a variety of
issues, including integration with software and hybrid TM; com-
piler support for nontransactional planning phases, in the style of
CSpec [12]; and dynamic choice of fallback strategies based on
run-time statistics.
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