On the Relationship Between Delaying
Operators and Language-Level Semantics *

Wenjia Ruan, Yujie Liu, and Michael Spear

Lehigh University
{wer210, yul510, spear}@cse.lehigh.edu

Abstract

The notion of “atomicity” implies that it is safe to rear-
range memory accesses within a transaction. In this pa-
per, we sketch a mechanism for postponing contentious
transactional operations until commit time, where they
become impervious to aborts. We then contemplate the
interplay between such a mechanism and language-
level semantics. Though preliminary, our algorithms
and recommendations should prove useful to designers
of transactional compilers and languages.

Categories and Subject Descriptors D.1.3 [Program-
ming Techniques]: Concurrent Programming—Parallel
Programming

General Terms Algorithms, Design, Performance

Keywords Transactional Memory, semantics, com-
piler optimizations

1. Introduction

Language-level transactions are often described as
providing atomicity, in the sense that the operations
that comprise the transaction appear to happen “all at
once”, as an indivisible operation without any interven-
ing memory operations from concurrent transactions.
While Hardware Transactional Memory (HTM) [9] is
largely able to provide this illusion for small transac-
tions, Software Transactional Memory (STM) typically
cannot, due to the high overheads that arise [10].

The unfortunate consequence is that compilers must
be conservative when reordering memory accesses that
occur within a transaction. In recent work, we analyzed
and transactionalized the memcached web cache [14].
When replacing locks with transactions, we discovered

* This work was supported in part by the National Science Founda-
tion through grants CNS-1016828 and CCF-1218530.

that increments to statistics counters, which occurred
in the middle of a transaction, dramatically increased
contention.

These counters are interesting, in that the transac-
tions that perform the increments never use the re-
turn values of their increment operations. The compiler
transforms these increment operations into sequences
entailing a shared memory read, local computation,
and a shared memory write. Thus at the point where
a counter increment occurs in the dynamic instruction
stream, a transaction becomes susceptible to conflicts
with any other transaction that accesses the counter.
This can lead to frequent aborts, and in the worst case
serialization to ensure progress.

Clearly it would be beneficial to move these incre-
ments to the end of the transaction (perhaps in a manner
similar to Abstract Nested Transactions [8]). Moreover,
doing so would not compromise the programmer’s no-
tion of atomicity, nor would it affect the correctness
of memcached. Unfortunately, in a complex program,
such a transformation is beyond the ability of a com-
piler with separate units of compilation, and manu-
ally transforming the code would severely hinder main-
tainability. Note, too, that the use of onCommit han-
dlers [11] is not appropriate, as these handlers run after
the transaction commits, and are not atomic. The pur-
pose of this paper is to consider the complexities that
might arise if a run-time system automatically and dy-
namically reordered operators. We consider a setting in
which concurrent transactions’ uses of the locations in-
volved in those operators might entail publication [10].

Our focus is on intentional reordering of operations
by the programmer or compiler for the sake of improv-
ing performance. It is largely complementary to efforts
to ensure the correctness of TM in the face of hardware
reordering [6]. We also focus exclusively on lock-based

2013/9/26



semantics, as opposed to the stronger but more restric-
tive case of “strong isolation” [7, 12]. Current trends in
the effort to standardize TM in C++ [2] suggest that
this level of semantics is most likely to appear in C
and C++. Note, too, that the concerns we raise are im-
material to implementations that require static separa-
tion [1].

The remainder of this paper is organized as follows.
In Section 2, we briefly discuss the implementation of a
reordering framework for operators in STM. Section 3
then presents an example of how reordering might vio-
late publication safety. Section 4 concludes.

2. Implementation

The guiding principle when reordering operators is that
both the read and the write that comprise the opera-
tor must be delayed until commit time. While compiler
analysis or run-time profiling (as in [15]) might be able
to identify which operators to reorder, our concern is
only on discussing correctness. Without loss of gener-
ality, we assume that (a) the programmer will manually
annotate those operators she wishes to reorder, and that
(b) all operators are ++ operators on 32-bit integers.

The pseudocode for a simple implementation of de-
layed operators appears in Algorithm 1. The oplog data
structure stores the addresses to which operator ++
should be applied at commit time.

The subtlety of this code lies in when operators
are applied at commit time, and how they are dy-
namically downgraded to regular loads and stores via
TxPromote(). There are four cases to consider:

¢ read-after-operator: In this case, the transaction at-
tempts to read a location to which there is a pending
++ operation. To ensure processor consistency, the
result of the increment must be visible to the read.
To achieve this, at the point of the read we transform
the increment into a load, increment, and store.

e write-after-operator: Since writeback precedes the
replay of the oplog, a write that follows an operator
can lead to the appearance that writes are reordered.
For example, if x == 0 and the sequence x++; x
= 7; is executed, the correct answer is 7, not 8. To
fix the problem, we promote any delayed operation
to its corresponding load and store if the location is
subsequently overwritten by the same transaction.

e operator-after-read: Typically an STM implemen-
tation that uses timestamps and ownership-records

Algorithm 1: Pseudocode for delayed operators

1 TXREAD(addr)

2 if addr € oplog then oplog. TXPROMOTE(addr)
// remainder of TXREAD unchanged

3 TXWRITE(addr, v)

4 if addr € oplog then oplog. TXPROMOTE(addr)
// remainder of TXWRITE unchanged

s TxOP(addr)

6 L oplog < oplog U {addr}

7 TXPROMOTE(addr)

8 val = TXREAD(addr)// assume TXREAD skips line 2
9 val ++

10 TXWRITE(addr, val)// assume TXWRITE skips line 4
1 oplog.remove(addr)

12 TXCOMMIT()

13 writeset.lockAll()

14 oplog.1lockAll ()

15 readset.validate ()

16 writeset.writeback ()

17 oplog.performOps ()

18 writeset.unlockAll ()

19 | oplogunlockall ()

only acquires a transaction 7" to acquire a write lock
on a location if that location hasn’t been acquired
by another transaction since 7"s last validation. In
this manner, a subsequent read-set validation can ig-
nore those locations for which it holds a write lock:
any reads to that location were valid when the lock
was acquired, and no subsequent changes by other
transactions are possible. However, the benefit of de-
laying operators is that concurrent transactions with
conflicting delayed updates to the same counter can
both commit. Thus acquiring locks for the oplog
should not carry this constraint, and instead should
be performed in a manner that allows read-set vali-
dation to easily determine when a read that was sub-
sequently locked for an increment was also concur-
rently updated by another transaction.

¢ operator-after-write: There are no concerns in this
case: the operator will be correctly applied to the
updated value, since writeback precedes the appli-
cation of operations stored in oplog.

3. Impact on Semantics

Menon et al. proposed several levels of transactional
semantics [10], which trade serialization at the bound-
aries of transactions with increasing restrictions on the

2013/9/26



Initially: data == 42, ready == false, val ==

Initially: data == 42, ready == 0, val == 0

Thread 1: Thread 2: Thread 1: Thread 2:
1 1 transaction { 1 1 transaction {
2 2 tmp = data; 2 2 ready++;
3 data = 1; 3 3 3 tmp = data;
4 transaction { 4 4 data = 1; 4
5 ready = true; 5 5 transaction { 5
6 } 6 6 ready = 1; 6
7 if (ready) 7 } 7
8 val = tmp; 8 8 if (ready)
9 9 9 val = tmp;
Can val == 427 10 10 else
11 11 ready—-—;
Figure 1: Basic publication example (reproduced from 12 12}

Figure 1 of Menon et al. [10]).

programming model. The work primarily focused on
racy idioms for initializing a datum and then making it
visible to transactions. However, the two least restric-
tive levels, “Asymmetric Lock Atomicity” (ALA) and
“Encounter-time Lock Atomicity” (ELA), are both ap-
plicable to C++, where racy code is erroneous. These
models differ primarily in whether the compiler can re-
order reads of a datum that might be concurrently ini-
tialized outside of a transaction.

The canonical example appears in Figure 1, where
ALA ensures that the race accessing data is benign, and
does not produce the erroneous output val == 42,
whereas ELA does not. Note that when all transactions
are protected by a single global lock, the race is benign,
as 42 can never be used by Thread 2. Note, too, that this
example might arise under aggressive optimization.

Let us now consider an extension to the code, in
which ready is a counter, where zero indicates that
data is not initialized, and any other value is the num-
ber of transactions that have used data in a successful
transaction. This code appears in Figure 2. While ad-
mittedly contrived, we hope the reader agrees that this
code is not unrealistic: programs might optimistically
increment the reference count early, and then undo the
increment under situations that are expected to be rare.

ALA is defined as providing the illusion that all
read locks are acquired at transaction begin, but write
locks can be delayed all the way to commit time. ELA,
in contrast, gives the appearance that all read locks
are acquired immediately before the first read of the
corresponding location (write locks are acquired as in
ALA).

In the absence of delayed operators, the example in
Figure 2 is correct for both ELA and ALA. However,

Can val == 42?

Figure 2: Publication violation example with delayed
operators.

note that the read of ready by Thread 2 will result
in a call to TxPromote, and effectively cause a read
and write of ready to occur after Thread 2’s transac-
tion commits, instead of before data is read. Thus
an STM implementation that only provides ELA se-
mantics cannot delay the ++ operator without risking
publication violations. Note that this finding extends
the work of Menon et al., which showed that depen-
dent reads cannot be reordered above non-dependent
reads under ELA. This example demonstrates that as-
sumptions about atomicity and program order forbid
additional orderings. We leave as future work deter-
mination of whether the error is due to reordering two
reads, or reordering a read before a preceding write.
Another promising direction is the discovery of gener-
alizations to guide implementation of delayed operators
under ELA. Of course, STM implementations that pro-
vide ALA semantics (or stronger) are immune to the
problem, since all reads by Thread 1’s transaction ap-
pear to occur when the transaction begins.

Under some circumstances, it may be possible to
make delayed operators behave correctly under ELA
semantics. Consider a timestamp-based STM, such
as TL2 [4] or TinySTM [5]: in these algorithms, the
lock that protects ready also stores a version number,
which corresponds to the time at which the most recent
update to ready occurred. Suppose that oplog were
extended to store pairs, where the second value was the
version of the lock at the time when the operator was
called, and that TxPromote only succeeded if the
value of the lock was no greater than the value stored
in the oplog. With these changes, TxPromote would

2013/9/26



succeed only if the corresponding load and store ap-
peared to happen at Line 1, before Thread 1’s transac-
tion modified ready. Otherwise, TxPromote would
fail, and the transaction would abort.

4. Conclusions

The relationship between delayed operators and seman-
tics is subtle, and much work remains before imple-
mentations can be sure that delaying operators is cor-
rect. Of particular concern is that our proposed solution
for ELA semantics seems to require versioned writes:
consequently, it may not be possible for all STM imple-
mentations to be compatible with delayed operators. In
the case of pessimistic STM algorithms with read lock-
ing, some [3] have sufficient space in their lock imple-
mentations to store monotonically increasing counters
as the writer version, while others [13] do not.

Another concern is that while delayed operators pre-
vent aborts and transaction-level contention, they do
not eliminate the true memory contention of the un-
derlying application. If concurrent transactions must
update the same shared data, then there is no disjoint
access parallelism, and even with delayed operators,
the best case performance will be limited by coherence
traffic on shared data.

References

[1] M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics
of Transactional Memory and Automatic Mutual Ex-
clusion. In Proceedings of the 35th ACM Symposium
on Principles of Programming Languages, San Fran-
cisco, CA, Jan. 2008.

[2] A.-R. Adl-Tabatabai, T. Shpeisman, and J. Gottschlich.
Draft Specification of Transactional Language
Constructs for C++, Feb. 2012. Version
1.1, http://justingottschlich.com/
tm-specification-for-c-v-1-1/.

[3] D. Dice and N. Shavit. TLRW: Return of the Read-
Write Lock. In Proceedings of the 22nd ACM Sympo-
sium on Parallelism in Algorithms and Architectures,
Santorini, Greece, June 2010.

[4] D. Dice, O. Shalev, and N. Shavit. Transactional Lock-
ing II. In Proceedings of the 20th International Sympo-
sium on Distributed Computing, Stockholm, Sweden,
Sept. 2006.

[5] P. Felber, C. Fetzer, and T. Riegel. Dynamic Perfor-
mance Tuning of Word-Based Software Transactional
Memory. In Proceedings of the 13th ACM Symposium
on Principles and Practice of Parallel Programming,
Salt Lake City, UT, Feb. 2008.

[6] R. Guerraoui, T. Henzinger, and V. Singh. Software
Transactional Memory on Relaxed Memory Models. In
Proceedings of the 21st International Conference on
Computer Aided Verification, Grenoble, France, June
2009.

[7] R. Guerraoui, T. Henzinger, M. Kapalka, and V. Singh.
Transactions in the Jungle. In Proceedings of the 22nd
ACM Symposium on Parallelism in Algorithms and Ar-
chitectures, Santorini, Greece, June 2010.

[8] T. Harris and S. Stipic. Abstract Nested Transactions.
In Proceedings of the 2nd ACM SIGPLAN Workshop on
Transactional Computing, Portland, OR, Aug. 2007.

[9] M. P. Herlihy and J. E. B. Moss. Transactional Mem-
ory: Architectural Support for Lock-Free Data Struc-
tures. In Proceedings of the 20th International Sympo-
sium on Computer Architecture, San Diego, CA, May
1993.

[10] V. Menon, S. Balensiefer, T. Shpeisman, A.-R. Adl-
Tabatabai, R. Hudson, B. Saha, and A. Welc. Practi-
cal Weak-Atomicity Semantics for Java STM. In Pro-
ceedings of the 20th ACM Symposium on Parallelism in
Algorithms and Architectures, Munich, Germany, June
2008.

[11]Y. Ni, A. Welc, A.-R. Adl-Tabatabai, M. Bach,
S. Berkowits, J. Cownie, R. Geva, S. Kozhukow,
R. Narayanaswamy, J. Olivier, S. Preis, B. Saha, A. Tal,
and X. Tian. Design and Implementation of Transac-
tional Constructs for C/C++. In Proceedings of the 23rd
ACM Conference on Object Oriented Programming,
Systems, Languages, and Applications, Nashville, TN,
USA, Oct. 2008.

[12] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai,
S. Balensiefer, D. Grossman, R. L. Hudson, K. Moore,
and B. Saha. Enforcing Isolation and Ordering in STM.
In Proceedings of the 2007 ACM Conference on Pro-
gramming Language Design and Implementation, San
Diego, CA, June 2007.

[13] M. Spear. Lightweight, Robust Adaptivity for Software
Transactional Memory. In Proceedings of the 22nd
ACM Symposium on Parallelism in Algorithms and Ar-
chitectures, Santorini, Greece, June 2010.

[14] T. Vyas, Y. Liu, and M. Spear. Transactionalizing
Legacy Code: An Experience Report Using GCC and
Memcached. In Proceedings of the 8th ACM SIGPLAN
Workshop on Transactional Computing, Houston, TX,
Mar. 2013.

[15] F. Zyulkyarov, S. Stipic, T. Harris, O. Unsal, A. Cristal,
I. Hur, and M. Valero. Discovering and Understand-
ing Performance Bottlenecks in Transactional Applica-
tions. In Proceedings of the 19th International Confer-
ence on Parallel Architecture and Compilation Tech-
niques, Vienna, Austria, Sept. 2010.

2013/9/26



