
Snapshot Isolation Does Not Scale Either∗

Victor Bushkov
EPFL, IC, LPD

victor.bushkov@epfl.ch

Dmytro Dziuma
FORTH-ICS

ddziuma@ics.forth.gr

Panagiota Fatourou
University of Crete & FORTH-ICS

faturu@csd.uoc.gr

Rachid Guerraoui
EPFL, IC, LPD

rachid.guerraoui@epfl.ch

1 Introduction

Transactional memory (TM) [11, 15] allows concurrent processes to execute operations on data
items within atomic blocks of instructions, called transactions. A transaction may either commit
in which case all its updates become visible to other transactions, or abort in which case all its
updates are discarded. The paradigm is appealing for its simplicity but implementing it efficiently
is challenging. Ideally, the TM system should not introduce any contention between transactions
beyond that inherently due to the actual code of the transactions. In other words, if two transactions
access disjoint sets of data items (i.e. if they do not conflict), then none of these transactions should
delay the other one, i.e., these transactions should not contend on any base object. This requirement
has been called strict disjoint-access-parallelism. Base objects are low-level objects, which provide
atomic primitives like read/write, load linked/store conditional, compare-and-swap, used to implement
the TM system. Two transactions contend on some base object if both access that object during
their executions and one of them performs a non-trivial operation on that object, i.e. an operation
which may update its state.

Disjoint-access-parallelism was introduced in [12]. Later variants [1, 2, 6] employed the concept
of a conflict graph. A conflict graph is a graph whose vertices represent transactions (or operations)
performed in an execution α and an edge exists between two nodes if the corresponding transactions
(operations) conflict in α. In most of these definitions, disjoint-access-parallelism requires any two
transactions to contend on a base object only if there is a path in the conflict graph of the minimal
execution interval that contains both transactions. Different variants are met in the literature with
the names disjoint-access-parallelism or weak disjoint-access-parallelism (most of them use different
properties to restrict access to base objects). Stronger versions of disjoint-access-parallelism like
strict disjoint-access-parallelism, result in more parallelism (and promote scalability) and therefore
they are highly desirable when designing TM implementations: strict disjoint-access-parallelism is
indeed ensured by blocking TM algorithms like TL [4]. Nevertheless, a transaction that locks a
data item and gets paged out might block all other transactions for a long amount of time. One
might require a liveness property that prevents such blocking. It was shown however in [8] that a
TM cannot ensure strict disjoint-access-parallelism if it also needs to ensure serializability [13] and
obstruction-freedom [7, 5]. Obstruction-freedom ensures that a transaction can be aborted only when
step contention is encountered during the course of its execution. Obstruction-freedom is weaker than
lock-freedom or wait-freedom. It allows for designing simpler TM algorithms and therefore it has been
given special attention in TM computing [9].

We study the following question: can we ensure strict disjoint-access-parallelism and obstruction

∗This work has been supported by the European Commission under the 7th Framework Program through the
TransForm (FP7-MC-ITN-238639) project.

1

freedom if we consider other consistency conditions? In other words, is consistency a major factor
against scalability? We focus on snapshot isolation [3], a safety property which, roughly speaking,
requires that transactions should be executed as if every read operation reads from some snapshot
of the memory that was taken when the transaction started. Snapshot isolation is an appealing
property for TM computing since it provides the potential to increase throughput for workloads with
long transactions [14]. If the set of transactions is restricted to those that do not read data items
they have previously written, snapshot isolation is a weaker property than strict serializability.

We prove that the answer is still negative. Namely, it is impossible to implement a TM which is
strict disjoint-access-parallel and satisfies obstruction-freedom and snapshot isolation. To make our
impossibility result stronger, we consider, for its proof, a weak snapshot isolation property which
requires only that each transaction reads from some consistent snapshot of the memory taken when
it starts, thus ignoring the extra constraint (met in the literature [3, 14] for snapshot isolation)
that from two concurrent transactions writing to the same data item, only one must commit. It is
remarkable that our impossibility result holds for two variants of snapshot isolation, the original one
from the database world where a read of a data item following a write to this data item by the same
transaction returns the value written by this write, and a simpler one where all reads (even those
following writes to the same data item by the same transaction) return the value recorded in the
snapshot taken at their start.

We also show how to circumvent the impossibility result if we relax the disjoint-access-parallelism
requirement between update transactions: mainly we show how we can get a simplified version of
DSTM [5], called SI-DSTM, which satisfies snapshot isolation, obstruction-freedom, and the fol-
lowing weaker disjoint-access-parallelism requirement: two operations (executed by two concurrent
transactions T1 and T2) on different data items, one of which is a read operation, never contend
on the same base object, and two write operations (by T1 and T2) on different data items contend
on the same base object only if there is a chain of transactions starting with the transaction that
performs one of these write operations and ending with the transaction that performs the other,
such that every two consecutive transactions in the chain conflict and the execution interval of each
of these transactions overlaps with that of either T1 or T2. We call the property satisfied by write
transactions weak disjoint-access-parallelism. DSTM satisfies weak disjoint-access-parallelism for all
transactions, while SI-DSTM satisfies strict disjoint-access-parallelism for read-only transactions and
weak disjoint-access-parallelism for write transactions. Moreover, SI-DSTM is significantly simpler
than the original DSTM algorithm.

2 Useful Definitions

A TM algorithm provides implementations for the routines readDI and writeDI which are called
to read or write data items, respectively, and for the routines CommitTr, and AbortTr, which are
called when a transaction tries to commit or abort, respectively. Each time a transaction calls one
of these routines we say that it invokes an operation; when the execution of the routine completes,
a response is returned. We denote the invocation of CommitTr by a transaction T as commitT ; the
response to commitT can be either CT (commit) or AT (abort). We denote by (i) x.write(v) the
invocation of writeDI for data item x with value v; it returns ok if the write was successful or AT if
the transaction that invoked it has to abort, (ii) x.read() the invocation of readDI for data item x;
it returns a value for x if the operation was successful or AT if the transaction that invoked it has
to abort.

A configuration consists of the state of each process and the state of each base object. A step of
a process consists of applying a single operation on some base object, its response, and zero or more
local operations that may cause the internal state of the process to change; each step is executed
atomically. An execution α is a sequence of steps. An execution is solo if every step is performed by
the same process. Two executions α1 and α2 starting from configurations C1 and C2, respectively,
are indistinguishable to transaction T , if the state of T is the same in C1 and C2, and the sequence of

2

steps performed by T (and thus also the responses it receives) are the same during both executions.
A history H is a sequence of invocations and responses performed by transactions. Given an exe-

cution α, we denote by Hα the sequence of invocations and responses performed by the transactions
in α. Let H|T be the longest subsequence of H consisting only of invocations and responses of a
transaction T . We say that T commits (aborts) in H if H|T ends with CT (AT). If H|T ends with
a commit invocation, then T is commit-pending. A history H is sequential if no two transactions
are concurrent in H. H is complete if it does not contain any transactions that have neither com-
mitted not aborted. A read operation x.read() by some transaction T is global if T has not invoked
x.write(∗) before invoking x.read(). Transaction T is legal in a sequential history H, if every read
operation r whose response is not AT , returns a value v such that: (i) if r is not global, then v is
the value written by the last invocation of x.write preceding r in H; (ii) if r is global and there are
committed transactions preceding T in H which invoke x.write(∗), then v is the argument of the
last x.write() invocation by those transactions; (iii) otherwise, v is the initial value of x. A complete
sequential history H is legal if every transaction is legal in H.

Let T be a committed or commit-pending transaction in a history H. Let T |read be the longest
subsequence of H|T consisting only of the global read invocations and their corresponding responses
and T |other be the subsequence H|T − T |read, i.e. T |other consists of all invocations performed by
T (and their responses) other than those comprising T |read. Let λ be the empty execution. Then
we define Tr and To in the following way:

• Tr = T |read · commitTr · CTr if T |read 6= λ, and Tr = λ otherwise, and

• To = T |other · commitTo · CTo if T |other 6= λ, and To = λ otherwise.

Definition 2.1. An execution α satisfies snapshot isolation, if for every committed transaction T
(and for some of the commit-pending transactions) in α it is possible to insert a read serialization
point ∗T,r and a write serialization point ∗T,w such that: (i) ∗T,r precedes ∗T,w, (ii) both ∗T,r and
∗T,w are inserted within the execution interval of T , and (iii) if σα is the sequence defined by these
serialization points, in order, and Hσα is the history we get by replacing each ∗T,r with Tr and each
∗T,w with To in σα, then Hσα is legal.

3 The impossibility result

Theorem 3.1. No obstruction-free STM can ensure both snapshot isolation and strict disjoint-
access-parallelism.

Proof. We provide a brief description of the proof. Assume, by contradiction, that there is an
obstruction-free STM which ensures both snapshot isolation and strict disjoint-access-parallelism.
We consider the following transactions, all executed by distinct processes: (1) T1, executed by
process p1, writes value 1 to a, b, and c, (2) T2, executed by process p2, writes value 2 to a, d, and
e, (3) T3, executed by process p3, reads from b, (4) T4, executed by process p4, reads from d, (5)
T5, executed by process p5, reads from e, (6) T ′

5, executed by process p′5, reads from c, and (7) T6,
executed by process p6, reads from a.

We will construct two executions: δ = α1 · α2 · s1 · s2 · γ6, and δ′ = α1 · α2 · s2 · s1 · γ′6, such that:
(i) γ6 and γ′6 are solo executions of T6, (ii) in γ6, T6 reads the value 2 for a, (iii) in γ′6, T6 reads the
value 1 for a, and (iv) γ6 and γ′6 are indistinguishable. Thus, T6 should read the same value for a in
both executions which is a contradiction.

Specifically, α1 is the solo execution of T1 by process p1 from the initial configuration C0 up until
the point that p1 is poised to execute step s1 which is critical for T3, i.e. in the execution γ′3 where
p3 executes solo T3 before s1 until T3 commits (T3 will indeed commit because of snapshot isolation)
T3 reads 0 for b, whereas in the execution γ3 where p3 executes solo T3 after s1 until T3 commits, T3
reads 1 for b. To define α2 and s2, we let p2 execute solo T2, after α1, until it is poised to execute

3

a step which is critical for T4, i.e. in the execution γ′4 where p4 executes solo T4 before s2 until T4
commits, T4 reads 0 for d, whereas in the execution γ4 where p4 executes solo T4 after s2 until T4
commits, T4 reads 2 for d.

We argue that (i) s1 applies a non-trivial operation on some base object o1 such that T3 reads o1
in γ3, (ii) γ3 is legal after α1 · α2 · s1 and γ′3 is legal after α1 · α2 · s2, and (iii) γ3 and γ′3 do not read
any base object written by α2 · s2. Similarly, we argue that (i) s2 applies a non-trivial operation on
some base object o2 6= o1 such that T4 reads o2 in γ4, (ii) γ4 and γ′4 are legal after α1 · α2 · s1, and
(iii) γ4 and γ′4 do not read any base object written by α1 · s1.

To argue that γ6 and γ′6 will return the required values, we consider the following two executions:
γ = α1 · α2 · s1 · γ3 · γ′4 · s2 · γ5 · γ6 (Fig. 1) and γ′ = α1 · α2 · s2 · γ4 · γ′3 · s1 · γ′5 · γ′6, where γ5 is
the solo execution of T5 by p5 until T5 commits, and γ′5 is the solo execution of T ′

5 by p′5 until T ′
5

commits. We argue that these executions are legal. To conclude the proof, we prove that γ and δ
are indistinguishable to p6 and T6 reads 2 for a in γ; similarly, γ′ and δ′ are indistinguishable to p6
and T6 reads 1 for a in γ′.

We remark that the imposibility result also holds for a simpler version of Definition 2.1 where
T |read contains all read operations (global or not) performed by T and T |other contains all its write
operations. moreover, the impossibility result holds if we consider a stronger version of Definition 2.1
which ensures the stated property for every prefix α′ of alpha. Finally, we have shown that the
impossibility result holds even if the system provides primitives that atomically access more than
one base objects.

p1 T1
a.w(1), b.w(1), c.w(1) s1

p2 T2
a.w(2), d.w(2), e.w(2) s2

p3 T3
b.r→ 1

C

p4 T4
d.r→ 0

C

p5 T5
e.r→ 2

C

p6 T6
a.r→ 2

C
α1 α2 s1 γ3 γ′4 s2 γ5 γ6

Figure 1: Execution γ in which T6 reads 2 from a.

4 SI-DSTM

SI-DSTM is a simplified version of DSTM [10]. It maintains, for each update transaction T , a
record with fields: (i) Status: stores the current status of T (takes values Active, Committed, or
Aborted, initially Active), (ii) pendingStatus: records whether T should eventually abort (takes
values Active, Committed, or Aborted, initially Committed), and (iii) readList: stores information
about the data items read by T . As in DSTM, SI-DSTM maintains two records, Locator and
TMObject, for each data item x and ensures a one-to-one correspondence between data items and
TMObjects. It T wants to write a data item and the ownership of x is already held by T , then the
new value is written in the newObject field of current x’s locator. Otherwise, as in DSTM, cloning
and indirection are employed: a new locator is created for x and its transaction field is initialized

4

to point to the transactional record of T . Then, T repeatedly tries to change the start field of the
TMObject of x to point to this new locator. Before doing so, it writes the value Aborted in the
pendingStatus field of the transactional record of the transaction that T found to be the holder of
the ownership of x. Each transaction validates its read set to ensure that each data item in T ’s read
list is still consistent. We remark that performing this validation only once at commit time is enough
to ensure snapshot isolation.

In SI-DSTM, read-only transactions are invisible. Specifically, SI-DSTM does not maintain shared
transactional records for read-only transactions. Each such transaction T maintains only a read list
in its private memory space. Moreover, read-only transactions never cause other transactions to
abort. From the transactional records of update transactions, a read-only transaction reads only the
status field in order to find the current value of a data item that it wants to read and it is owned
by any of these transactions; it does so in a way similar to that of DSTM. In order strict disjoint-
access-parallelism to be ensured between a read-only transaction T and the update transactions, in
SI-DSTM, Locator contains an additional field, called pendingStatus, in each transactional record.
If a transaction T1 perfroms a write operation to a data item x for which transaction T2 holds the
ownership, T1 does not write the value Abort in the status field of T2; it rather writes this value in
pendingStatus to indicate that T2 should eventually abort. At commit time, T2 performs an exchange
of pendingStatus and status. It then reads status again and returns true or false depending on
the value of status. In this way, read-only transactions that read data items owned by T2 contend
only with T2 and not with T1 or other update transactions that write in the transactional record of
T2. Thus, strict disjoint access parallelism is ensured between a read-only transaction and any other
transaction.

References

[1] Y. Afek, M. Merritt, G. Taubenfeld, and D. Touitou. Disentangling multi-object operations
(extended abstract). In Proceedings of the sixteenth annual ACM symposium on Principles of
distributed computing, PODC ’97, pages 111–120, New York, NY, USA, 1997. ACM.

[2] H. Attiya, E. Hillel, and A. Milani. Inherent limitations on disjoint-access parallel implemen-
tations of transactional memory. In Proceedings of the twenty-first annual symposium on Par-
allelism in algorithms and architectures, SPAA ’09, pages 69–78, New York, NY, USA, 2009.
ACM.

[3] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A critique of ansi sql
isolation levels. SIGMOD Rec., 24(2):1–10, May 1995.

[4] D. Dice and N. Shavit. What really makes transactions faster? In Proceedings of the 1st
ACM SIGPLAN Workshop on Languages, Compilers, and Hardware Support for Transactional
Computing, TRANSACT’06, 2006.

[5] S. Doherty, L. Groves, V. Luchangco, and M. Moir. Towards formally specifying and verifying
transactional memory. Electron. Notes Theor. Comput. Sci., 259:245–261, Dec. 2009.

[6] F. Ellen, P. Fatourou, E. Kosmas, A. Milani, and C. Travers. Universal constructions that ensure
disjoint-access parallelism and wait-freedom. In Proceedings of the 2012 ACM symposium on
Principles of distributed computing, PODC ’12, pages 115–124, New York, NY, USA, 2012.
ACM.

[7] F. Fich, M. Herlihy, and N. Shavit. On the space complexity of randomized synchronization. J.
ACM, 45(5):843–862, Sept. 1998.

5

[8] R. Guerraoui and M. Kapalka. On obstruction-free transactions. In Proceedings of the twentieth
annual symposium on Parallelism in algorithms and architectures, SPAA ’08, pages 304–313,
New York, NY, USA, 2008. ACM.

[9] M. Herlihy, V. Luchangco, P. Martin, and M. Moir. Nonblocking memory management support
for dynamic-sized data structures. ACM Trans. Comput. Syst., 23(2):146–196, May 2005.

[10] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III. Software transactional memory for
dynamic-sized data structures. In Proceedings of ACM PODC’03, pages 92–101. ACM, 2003.

[11] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for lock-free data
structures. SIGARCH Comput. Archit. News, 21(2):289–300, may 1993.

[12] A. Israeli and L. Rappoport. Disjoint-access-parallel implementations of strong shared memory
primitives. In Proceedings of the thirteenth annual ACM symposium on Principles of distributed
computing, PODC ’94, pages 151–160, New York, NY, USA, 1994. ACM.

[13] C. H. Papadimitriou. The serializability of concurrent database updates. J. ACM, 26(4):631–
653, oct 1979.

[14] T. Riegel, C. Fetzer, and P. Felber. Snapshot isolation for software transactional memory. In
In Proceedings of the First ACM SIGPLAN Workshop on Languages, Compilers, and Hardware
Support for Transactional Computing, TRANSACT’06, 2006.

[15] N. Shavit and D. Touitou. Software transactional memory. In Proceedings of ACM PODC’95,
pages 204–213, New York, NY, USA, 1995. ACM.

6

	Introduction
	Useful Definitions
	The impossibility result
	SI-DSTM

