

Deterministic execution
of TM applications

Vesna Smiljković, Christof Fetzer*

Osman Unsal, Adrián Cristal and Mateo Valero

Barcelona Supercomputing Center, Spain

*Technische Universität Dresden, Germany

 2

Introduction

• Multicore systems and multithreaded applications

• Threads interleave in arbitrary order (nondeterminism)

• Difficult to develop, test, debug

• Difficult to provide fault-tolerance and attack-tolerance

• Determinism:
– Repeatability

– Easier finding and solving bugs

– Easier providing tolerance to faults/attacks in replica-based
systems with no communication among replicas

 3

Deterministic execution

• 1 running thread at a time

• Threads execute in a previously defined order (round-robin)

• Synchronization operations - points where a thread
changes its state

• Thread's states: running, ready, blocked

• Providing strong determinism – deterministic execution of
code within and outside critical sections/atomic blocks
(important for code with data races)

• Implementations:
– Det-Serial

– Det-Parallel

 4

Implementation – Det-Serial

• A runtime C library

• Synchronization operations - points where a thread
changes its state:
– pthread_create, pthread_yield, pthread_join,

pthread_barrier_init, pthread_barrier_destroy,
pthread_barrier_wait

– sleep

• Running all code in serial

 5

Implementation – Det-Parallel

• Based on Det-Serial

• Running non-transactional code in serial

• Transactions:

– start in serial

– run in parallel

– commit in serial

• STM with 2 conflict detection policies (Lazy, Eager)

• Det-Parallel:
– Lazy Det-Parallel

– Eager Det-Parallel

 6

Implementation – Det-Parallel

Lazy Det-Parallel

• Transactions:
– start in serial

– run in parallel

– commit in serial (conflict detection and aborts)

Eager Det-Parallel

• Transactions:
– start in serial

– run in parallel (conflict detection and aborts)

– commit in serial

Additional barriers
to synchronize threads

Additional barriers
to synchronize threads

 7

Implementation – Det-Parallel(2)

Eager Det-Parallel

• Transactions:

– start in serial

– run in parallel (conflict detection and aborts)

– commit in serial

Step 1.
- the first-to-commit transaction never aborts
- other conflicting transactions abort

Step 2.
- provide fairness
- the first-to-commit thread commits consecutive txns

Fewer barriers to
synchronize threads

 8

Evaluation

• Environment:
– 2 Intel Xeon E5405 quad-core processors (8 cores in total),

– 4GiB RAM

• TM support:
– TinySTM 1.0.3.

• Benchmarks
– STAMP [1]

[1] Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transactional
applications for multi-processing. In: Workload Characterization, IISWC 2008.

 9
Slowdown: Genome, Intruder, Kmeans, SSCA2

1.7x 4.6x 3.9x 6.1x

 Speedup: Bayes, Vacation

1.4x

Det-Parallel vs. Det-Serial
 (8 threads)

Evaluation - STAMP

1.1x

 10

Conclusions

• Determinism:
– to find and solve bugs easier

– to provide fault- and attack- tolerance easier

• Different implementations of a deterministic system

• Provide deterministic and parallel execution of transactions

• Additional synchronization
– provides strong determinism

– lowers the benefit of parallel execution of transactions

 11

Future work

• Eager Det-Parallel
– to ensure progress of the first-to-commit transaction

– to reduce the number of synchronization barriers

• Comparison with DTHREADS [2]

• Various schedule algorithms

• Determinism and diversity

[2] T. Liu, C. Curtsinger, and E. D. Berger. DTHREADS: efficient deterministic Multithreading.
In Proceedings of the 23rd ACM Symposium on Operating Systems Principles (SOSP ’11).

Thank you for your attention!

vesna.smiljkovic@bsc.es

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

