
IMPROVING APPLICATION
FAULT-TOLERANCE WITH
DIVERSE COMPONENT REPLICATION

João Soares, Nuno Preguiça
CITI – DI / FCT / Univ. Nova Lisboa

Motivation

!  Software Bugs compromise system/application
availability and reliability

!  Causing applications to crash or produce erroneous
results

Motivation

!  Developers rely heavily on third party components,
these present a great source of software bugs
! Mostly designed for generic use
! Testing does not contemplate specific usage scenarios

Motivation

!  Replication & Diversity have been used as
mechanisms to deal with these faults
! Replication prevents fail-stop faults
! Diversity detects and prevents additional faults

Objective

!  Provide run-time fault detection and prevention
! For single machine multi-core systems

!  Create a framework for developing fault-tolerant
components
! Relying on existing third party components

!  Improving application fault-tolerance
! Minimum impact during software development

Macro-Component (MC)

!  Abstraction that encapsulates several diverse
implementations of the same interface
! Called Replicas

Interface

Replica 0 Replica 1 Replica n

Macro-Component (MC)

!  Faults are detected by
! Executing operations on all Replicas

Replica 1

Replica 0

Replica n

Application
Thread

Macro-Component
I
n
t
e
r
f
a
c
e

Macro-Component (MC)

!  Faults are detected by
! Executing operations on all Replicas
! Comparing the set of obtained results

" Results contradicting the majority are considered faulty

Rep 1 Rep 0 Rep n

Macro-Component

Validator
Inconsistent

Requisites

!  Operations need to execute in the same order on
all Replicas

!  Guaranteeing Replica state consistency
! Allowing detection and prevention of faulty behavior

Possible Approaches

!  Sequential Update Approach
! Update operations are executed sequentially on each

Replica, ordered at calling time
! Read operation are executed concurrently

!  Guarantees execution order in all Replicas (+)
!  Restricts performance (–)

! Different operations can have different performances
" Faster operations can be held by slower ones

Possible Approaches

!  Concurrent Update approach
! Read and Update operations are executed concurrently

on the Replicas

!  Reduces performance constraints (+)
!  Does not guarantee execution order (–)

! Replicas can offer different performance for the same
operation
" Operations can execute faster on some Replicas

Possible Approaches

!  Concurrent Update approach
! Read and Update operations are executed concurrently

on the Replicas

!  Reduces performance constraints (+)
!  Does not guarantee execution order (–)

! Replicas can offer different performance for the same
operation
" Operations can execute faster on some Replicas

Need to use a mechanism for totally
ordering operations on all Replicas

Our Approach

!  Operations on MCs are mapped into Transaction
Groups
! Operation on a Replica is wrapped by a transaction
! Group them into Transaction Group (TG)

!  Executed concurrently on the Replicas

Our Approach

!  We still need to preserve transaction order on
Replicas
! All transactions of a TG need to execute in the same

order
"  i.e., TGs need to be (totally) ordered

Ordering Approaches

!  TGs can be order a priori
! When the operation is called on the MC

!  TGs can be order during at the commit phase
! The first transaction of the group to commit defines the

order for all group transactions (i.e., the TG order)

Ordering Compromises

!  A priori order
! Less complex solution (+)

" Transaction only start after previous ones
! May compromise performance (–)

" Faster transactions can be held by slower ones

!  Commit phase ordering
! Does not compromise performance (+)

" Slower transaction do not held faster ones
! More complex (–)

" May increase transaction abort rate

Preliminary Studies and Results

!  Study the impact for possible approaches
! Used a Micro-Benchmark
! Executing a fixed number of operations on different

implementations of the same component
" Collection

!  Macro-Components use identical Replicas
! Without result validation
! All Replicas perform the same number of read/write

operations

Test bed

!  Sun Fire X4600 M2 x86-64 machine
! 8 dual-core AMD Opteron Model 8220 processors
! 32 GByte of RAM, running Debian 5 (Lenny) OS

!  Modified TL2 STM
! Using Deuce framework
! With additional states

" Pre-commit after validation

Preliminary Results

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

Th
ro

ug
hp

ut
 (

M
op

s/
s)

Threads

100% Reads, HashSet 40000 elements

Lock HashSet

Atomic HashSet

PreOrderTMMacroSet

UnOrderTMMacroSet

SequentialMacroSet

Preliminary Results

0

1

2

3

4

5

6

7

0 2 4 6 8 10

Th
ro

ug
hp

ut
 (

M
op

s/
s)

Threads

75% Reads, HashSet 40000 elements

Lock HashSet

Atomic HashSet

PreOrderTMMacroSet

UnOrderTMMacroSet

SequentialMacroSet

Preliminary Results

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 2 4 6 8 10

Th
ro

ug
hp

ut
 (

M
op

s/
s)

Threads

50% Reads, HashSet 40000 elements

Lock HashSet

Atomic HashSet

PreOrderTMMacroSet

UnOrderTMMacroSet

SequentialMacroSet

Discussion

!  Sequential Update approach show good results
! At least for small complexity components
! More complex components should also be tested

!  Benefits of TM usage and different ordering of
operations
! May provide improvements for operations with

different complexities/performances
" Components need to be developed for TM usage!

!  Thank you!

