IMPROVING APPLICATION
FAULT-TOLERANCE WITH
DIVERSE COMPONENT REPLICATION



Motivation

Software Bugs compromise system/application
availability and reliability

Causing applications to crash or produce erroneous
results



Motivation

Developers rely heavily on third party components,
these present a great source of software bugs

Mostly designed for generic use

Testing does not contemplate specific usage scenarios



Motivation

Replication & Diversity have been used as
mechanisms to deal with these faults

Replication prevents fail-stop faults

Diversity detects and prevents additional faults



Obijective

Provide run-time fault detection and prevention

For single machine multi-core systems

Create a framework for developing fault-tolerant
components

Relying on existing third party components

Improving application fault-tolerance

Minimum impact during software development



Macro-Component (MC)
N

1 Abstraction that encapsulates several diverse
implementations of the same interface

o1 Called Replicas




Macro-Component (MC)
N

01 Faults are detected by

o1 Executing operations on all Replicas

Macro-Component

Application
Thread




Macro-Component (MC)
=

01 Faults are detected by
o1 Executing operations on all Replicas

o1 Comparing the set of obtained results

m Results contradicting the majority are considered faulty

Macro-Component

B
<




Requisites

Operations need to execute in the same order on
all Replicas

Guaranteeing Replica state consistency

Allowing detection and prevention of faulty behavior



Possible Approaches

Sequential Update Approach

Update operations are executed sequentially on each
Replica, ordered at calling time

Read operation are executed concurrently
Guarantees execution order in all Replicas (+)

Restricts performance (=)

Different operations can have different performances

Faster operations can be held by slower ones



Possible Approaches

Concurrent Update approach

Read and Update operations are executed concurrently
on the Replicas

Reduces performance constraints (+)

Does not guarantee execution order (=)

Replicas can offer different performance for the same
operation

Operations can execute faster on some Replicas



Possible Approaches

Concurrent Update anbroach
Read and Update ¢

Need to use a mechanism for totally
on the Replicas ordering operations on all Replicas

Reduces performqn-W\/\ —

Does not guarantee execution order (=)

Replicas can offer different performance for the same
operation

Operations can execute faster on some Replicas



Our Approach

Operations on MCs are mapped into Transaction
Groups

Operation on a Replica is wrapped by a transaction

Group them into Transaction Group (TG)

Executed concurrently on the Replicas



Our Approach

We still need to preserve transaction order on
Replicas
All transactions of a TG need to execute in the same
order

i.e., TGs need to be (totally) ordered



Ordering Approaches

TGs can be order a priori

When the operation is called on the MC

TGs can be order during at the commit phase

The first transaction of the group to commit defines the
order for all group transactions (i.e., the TG order)



Ordering Compromises

A priori order
Less complex solution (+)
Transaction only start after previous ones

May compromise performance (=)

Faster transactions can be held by slower ones

Commit phase ordering
Does not compromise performance (+)
Slower transaction do not held faster ones

More complex (=)

May increase transaction abort rate



Preliminary Studies and Results

Study the impact for possible approaches
Used a Micro-Benchmark

Executing a fixed number of operations on different
implementations of the same component

Collection

Macro-Components use identical Replicas

Without result validation

All Replicas perform the same number of read/write
operations



Test bed

Sun Fire X4600 M2 x86-64 machine
8 dual-core AMD Opteron Model 8220 processors
32 GByte of RAM, running Debian 5 (Lenny) OS

Modified TL2 STM

Using Deuce framework

With additional states

Pre-commit after validation



Preliminary Results

100% Reads, HashSet 40000 elements

8
7
w6
o
3 3 Lock HashSet
":93_ 4 Atomic HashSet
-§> 3 PreOrderTMMacroSet
_§ 2 UnOrderTMMacroSet
" 1 SequentialMacroSet
0]

o
N

4 6 8 10
Threads



Preliminary Results

75% Reads, HashSet 40000 elements

7
~6
2
e 5
o
§4 Lock HashSet
":93_ Atomic HashSet
<= 3
> PreOrderTMMacroSet
.g 2 UnOrderTMMacroSet
[
1 SequentialMacroSet
0

o
N

4 6 8 10
Threads



Preliminary Results

50% Reads, HashSet 40000 elements

4.5
4
% 3.5
o 3
é 55 Lock HashSet
E_ .2 Atomic HashSet
> 1.5 PreOrderTMMacroSet
.g 1 UnOrderTMMacroSet
[
0.5 SequentialMacroSet
0
0 2 4 6 8 10

Threads



Discussion

Sequential Update approach show good results
At least for small complexity components

More complex components should also be tested

Benefits of TM usage and different ordering of
operations
May provide improvements for operations with
different complexities/performances

Components need to be developed for TM usage!



o1 Thank youl!



