
Dynamic Thread Mapping 
Based on Machine Learning for

Transactional Memory Applications

INRIA - LIG Laboratory - MESCAL Group - Grenoble University, France
Department of Computer Science - Pontifical Catholic University of Minas Gerais, Brazil

PPGCC - Pontifical Catholic University of Rio Grande do Sul, Brazil

1

2

Márcio Castro , Luís Fabrício Wanderley Góes, 
Luiz Gustavo Fernandes, Jean-François Méhaut

1

1

2

3

3



Motivation

Machine Learning to Thread Mapping on STM

Static Thread Mapping

Ongoing Work: Dynamic Thread Mapping

Conclusions

WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012

Outline



Motivation

Multicore processors
Mainstream approach to deliver higher performance
Complex memory hierarchies: different levels of cache
Limited and shared bandwidth

3

C C C C

L2 L2
L3

C C C C

L2 L2
L3

C C C C

L2 L2
L3

C C C C

L2 L2
L3

MEMORY

WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012



Motivation

Thread mapping:
Appealing approach to efficiently exploit the potential of multicores
Reduce latency or alleviate memory contention

4

C0 C1 C2 C3

L2

C4 C5 C6 C7

L2
L3

L2 L2
L3

thread migrations

C0 C1 C2 C3

L2

C4 C5 C6 C7

L2
L3

L2 L2
L3

C0 C1 C2 C3

L2

C4 C5 C6 C7

L2
L3

L2 L2
L3

C0 C1 C2 C3

L2

C4 C5 C6 C7

L2
L3

L2 L2
L3

Linux

Compact

Scatter

Round-Robin

Linux scheduler decides where each thread 
will run (threads may migrate)

Threads share caches when possible

Avoid cache sharing between threads

Threads share higher levels of cache

WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012



Motivation

Problem statement:

5

Multicore Platform

TM Application

STM System

WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012



Motivation

Problem statement:

5

Multicore Platform

TM Application

STM System

TL2

SwissTM

RSTM

TinySTM

WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012



Motivation

Problem statement:

5

Multicore Platform

TM Application

STM System

Priv
ate

Cac
he

s

Sha
red

Cac
he

s

Priv
ate

+S
ha

red

Cac
he

s

TL2

SwissTM

RSTM

TinySTM

WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012



Motivation

Problem statement:

5

Multicore Platform

TM Application

STM System

Priv
ate

Cac
he

s

Sha
red

Cac
he

s

Priv
ate

+S
ha

red

Cac
he

s

STAMP
Benchmarks

STMBench7Lee-TM
Benchmark

Micro-
Benchmarks

TL2

SwissTM

RSTM

TinySTM

WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012



Motivation

Problem statement:

5

Multicore Platform

TM Application

STM System

Priv
ate

Cac
he

s

Sha
red

Cac
he

s

Priv
ate

+S
ha

red

Cac
he

s

STAMP
Benchmarks

STMBench7Lee-TM
Benchmark

Micro-
Benchmarks

TL2

SwissTM

RSTM

TinySTM

WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012

How to choose an efficient thread mapping strategy?           



Motivation

6

Table I
IMPACT OF THREAD MAPPING STRATEGIES ON STM APPLICATIONS.

Application TinySTM SwissTM TL2
var (%) best worst var (%) best worst var (%) best worst

Bayes 17.6 Round-Robin Linux 19.3 Round-Robin Compact � � �
Genome 26.8 Round-Robin Compact 10.1 Scatter Compact 16.7 Linux Compact
Intruder 14.0 Compact Scatter 6.8 Compact Scatter 12.7 Compact Scatter
Kmeans 10.3 Linux Compact 10.6 Linux Round-Robin 14.4 Round-Robin Linux

Labyrinth 9.7 Scatter Compact 9.5 Scatter Round-Robin 18.6 Round-Robin Scatter
Ssca2 25.9 Scatter Compact 25.0 Scatter Compact 21.6 Compact Scatter

Vacation 9.2 Scatter Compact 17.2 Scatter Compact 8.0 Scatter Compact
Yada 23.0 Compact Scatter 18.8 Compact Scatter 18.0 Compact Scatter

II. MOTIVATION

On STM applications, the selection of a suitable thread
mapping strategy for a specific application/STM/platform
configuration is hard and there is no single solution. In this
section, we show this fact by performing experiments with
STM applications available from the Stanford Transactional
Applications for Multi-Processing (STAMP) [7]. We ran all
applications using 8 threads for three different STM systems
(TL2 [8], TinySTM [9] and SwissTM [10]) and four thread
mapping strategies (Round-Robin, Scatter, Compact and
Linux). These strategies are presented in Figure 1. Scatter
distributes threads across different processors avoiding cache
sharing between cores in order to reduce memory contention.
In contrast, Compact places threads on sibling cores. This
reduces memory latency access by sharing all levels of the
cache hierarchy between concurrent threads. The Round-
Robin strategy is an intermediate solution in which threads
share higher levels of cache (e.g., L3) but not the lower ones
(e.g., L2). Finally, the Linux default scheduling strategy is
a dynamic priority-based one that allows threads to migrate
to idle cores to balance the run queues.

C0 C1 C2 C3

L2

Scatter

C4 C5 C6 C7

L2
L3

L2 L2
L3

C0 C1 C2 C3

L2

Compact

C4 C5 C6 C7

L2
L3

L2 L2
L3

C0 C1 C2 C3

L2

Round-Robin

C4 C5 C6 C7

L2
L3

L2 L2
L3

C0 C1 C2 C3

L2

C4 C5 C6 C7

L2
L3

L2 L2
L3

Linux

thread migrations

Figure 1. Thread mapping strategies.

Table I shows the best and worst thread mapping strategies
for each pair of application and STM system on the SMP-
24 platform (its specification is provided in Section IV-A).
The variation (var) represents the difference in percentage
between the average speedups of the best and worst thread
mapping strategies.

As shown in Table I, performance variation can be high

depending on the application and STM system.1 For in-
stance, if the default Linux strategy is used for Bayes running
on TinySTM, the performance is decreased by 17.6% in
comparison to the Round-Robin thread mapping strategy.

We also observe that the behavior of the same application
varies across different STM systems. This stems from the
fact that each STM system implements different mechanisms
to detect and solve conflicts between transactions. Those
mechanisms modify the behavior of the application, so the
best thread mapping strategy is also affected. As we explain
in Section IV-C, we focus on TinySTM as it implements a
broad range of these mechanisms. Additionally, we observe
similar variations within the same STM system for its
different possible configurations.

As a conclusion, it is a hard problem to determine a
suitable thread mapping strategy for a STM application
considering both STM system and platform characteristics.
The dynamic behavior of the STM system makes it even
more non-trivial, since the same application can behave
differently for each STM configuration. In the next section,
we describe our solution to tackle this problem. We propose
a machine learning-based approach to predict thread map-
ping strategies based on the STM system, application and
platform characteristics.

III. APPLYING MACHINE LEARNING TO
THREAD MAPPING

Machine Learning (ML) [11], [12], [13] has become a
common component of approaches to model the behavior
of complex interactions between applications, systems and
platforms. It provides a portable solution to predict the
behavior of new combinations of application/system, also
called instances, based on a priori profiled runs. ML-based
approaches share a common framework that is usually com-
posed of a static and a dynamic phase. The static phase is
subdivided in the following three major steps: i) application
profiling; ii) data pre-processing and feature selection; and
iii) learning process. Its target is to build up a predictor to be

1The results for Bayes on TL2 are not available due to incompatibilities
between the benchmark code and the TL2 library.

Choosing a thread mapping for TM applications is complex...

WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012



Motivation

6

Table I
IMPACT OF THREAD MAPPING STRATEGIES ON STM APPLICATIONS.

Application TinySTM SwissTM TL2
var (%) best worst var (%) best worst var (%) best worst

Bayes 17.6 Round-Robin Linux 19.3 Round-Robin Compact � � �
Genome 26.8 Round-Robin Compact 10.1 Scatter Compact 16.7 Linux Compact
Intruder 14.0 Compact Scatter 6.8 Compact Scatter 12.7 Compact Scatter
Kmeans 10.3 Linux Compact 10.6 Linux Round-Robin 14.4 Round-Robin Linux

Labyrinth 9.7 Scatter Compact 9.5 Scatter Round-Robin 18.6 Round-Robin Scatter
Ssca2 25.9 Scatter Compact 25.0 Scatter Compact 21.6 Compact Scatter

Vacation 9.2 Scatter Compact 17.2 Scatter Compact 8.0 Scatter Compact
Yada 23.0 Compact Scatter 18.8 Compact Scatter 18.0 Compact Scatter

II. MOTIVATION

On STM applications, the selection of a suitable thread
mapping strategy for a specific application/STM/platform
configuration is hard and there is no single solution. In this
section, we show this fact by performing experiments with
STM applications available from the Stanford Transactional
Applications for Multi-Processing (STAMP) [7]. We ran all
applications using 8 threads for three different STM systems
(TL2 [8], TinySTM [9] and SwissTM [10]) and four thread
mapping strategies (Round-Robin, Scatter, Compact and
Linux). These strategies are presented in Figure 1. Scatter
distributes threads across different processors avoiding cache
sharing between cores in order to reduce memory contention.
In contrast, Compact places threads on sibling cores. This
reduces memory latency access by sharing all levels of the
cache hierarchy between concurrent threads. The Round-
Robin strategy is an intermediate solution in which threads
share higher levels of cache (e.g., L3) but not the lower ones
(e.g., L2). Finally, the Linux default scheduling strategy is
a dynamic priority-based one that allows threads to migrate
to idle cores to balance the run queues.

C0 C1 C2 C3

L2

Scatter

C4 C5 C6 C7

L2
L3

L2 L2
L3

C0 C1 C2 C3

L2

Compact

C4 C5 C6 C7

L2
L3

L2 L2
L3

C0 C1 C2 C3

L2

Round-Robin

C4 C5 C6 C7

L2
L3

L2 L2
L3

C0 C1 C2 C3

L2

C4 C5 C6 C7

L2
L3

L2 L2
L3

Linux

thread migrations

Figure 1. Thread mapping strategies.

Table I shows the best and worst thread mapping strategies
for each pair of application and STM system on the SMP-
24 platform (its specification is provided in Section IV-A).
The variation (var) represents the difference in percentage
between the average speedups of the best and worst thread
mapping strategies.

As shown in Table I, performance variation can be high

depending on the application and STM system.1 For in-
stance, if the default Linux strategy is used for Bayes running
on TinySTM, the performance is decreased by 17.6% in
comparison to the Round-Robin thread mapping strategy.

We also observe that the behavior of the same application
varies across different STM systems. This stems from the
fact that each STM system implements different mechanisms
to detect and solve conflicts between transactions. Those
mechanisms modify the behavior of the application, so the
best thread mapping strategy is also affected. As we explain
in Section IV-C, we focus on TinySTM as it implements a
broad range of these mechanisms. Additionally, we observe
similar variations within the same STM system for its
different possible configurations.

As a conclusion, it is a hard problem to determine a
suitable thread mapping strategy for a STM application
considering both STM system and platform characteristics.
The dynamic behavior of the STM system makes it even
more non-trivial, since the same application can behave
differently for each STM configuration. In the next section,
we describe our solution to tackle this problem. We propose
a machine learning-based approach to predict thread map-
ping strategies based on the STM system, application and
platform characteristics.

III. APPLYING MACHINE LEARNING TO
THREAD MAPPING

Machine Learning (ML) [11], [12], [13] has become a
common component of approaches to model the behavior
of complex interactions between applications, systems and
platforms. It provides a portable solution to predict the
behavior of new combinations of application/system, also
called instances, based on a priori profiled runs. ML-based
approaches share a common framework that is usually com-
posed of a static and a dynamic phase. The static phase is
subdivided in the following three major steps: i) application
profiling; ii) data pre-processing and feature selection; and
iii) learning process. Its target is to build up a predictor to be

1The results for Bayes on TL2 are not available due to incompatibilities
between the benchmark code and the TL2 library.

It is hard to determine a suitable thread mapping strategy of a STM 
application considering both STM system and platform characteristics.

Choosing a thread mapping for TM applications is complex...

WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012



Motivation

6

Table I
IMPACT OF THREAD MAPPING STRATEGIES ON STM APPLICATIONS.

Application TinySTM SwissTM TL2
var (%) best worst var (%) best worst var (%) best worst

Bayes 17.6 Round-Robin Linux 19.3 Round-Robin Compact � � �
Genome 26.8 Round-Robin Compact 10.1 Scatter Compact 16.7 Linux Compact
Intruder 14.0 Compact Scatter 6.8 Compact Scatter 12.7 Compact Scatter
Kmeans 10.3 Linux Compact 10.6 Linux Round-Robin 14.4 Round-Robin Linux

Labyrinth 9.7 Scatter Compact 9.5 Scatter Round-Robin 18.6 Round-Robin Scatter
Ssca2 25.9 Scatter Compact 25.0 Scatter Compact 21.6 Compact Scatter

Vacation 9.2 Scatter Compact 17.2 Scatter Compact 8.0 Scatter Compact
Yada 23.0 Compact Scatter 18.8 Compact Scatter 18.0 Compact Scatter

II. MOTIVATION

On STM applications, the selection of a suitable thread
mapping strategy for a specific application/STM/platform
configuration is hard and there is no single solution. In this
section, we show this fact by performing experiments with
STM applications available from the Stanford Transactional
Applications for Multi-Processing (STAMP) [7]. We ran all
applications using 8 threads for three different STM systems
(TL2 [8], TinySTM [9] and SwissTM [10]) and four thread
mapping strategies (Round-Robin, Scatter, Compact and
Linux). These strategies are presented in Figure 1. Scatter
distributes threads across different processors avoiding cache
sharing between cores in order to reduce memory contention.
In contrast, Compact places threads on sibling cores. This
reduces memory latency access by sharing all levels of the
cache hierarchy between concurrent threads. The Round-
Robin strategy is an intermediate solution in which threads
share higher levels of cache (e.g., L3) but not the lower ones
(e.g., L2). Finally, the Linux default scheduling strategy is
a dynamic priority-based one that allows threads to migrate
to idle cores to balance the run queues.

C0 C1 C2 C3

L2

Scatter

C4 C5 C6 C7

L2
L3

L2 L2
L3

C0 C1 C2 C3

L2

Compact

C4 C5 C6 C7

L2
L3

L2 L2
L3

C0 C1 C2 C3

L2

Round-Robin

C4 C5 C6 C7

L2
L3

L2 L2
L3

C0 C1 C2 C3

L2

C4 C5 C6 C7

L2
L3

L2 L2
L3

Linux

thread migrations

Figure 1. Thread mapping strategies.

Table I shows the best and worst thread mapping strategies
for each pair of application and STM system on the SMP-
24 platform (its specification is provided in Section IV-A).
The variation (var) represents the difference in percentage
between the average speedups of the best and worst thread
mapping strategies.

As shown in Table I, performance variation can be high

depending on the application and STM system.1 For in-
stance, if the default Linux strategy is used for Bayes running
on TinySTM, the performance is decreased by 17.6% in
comparison to the Round-Robin thread mapping strategy.

We also observe that the behavior of the same application
varies across different STM systems. This stems from the
fact that each STM system implements different mechanisms
to detect and solve conflicts between transactions. Those
mechanisms modify the behavior of the application, so the
best thread mapping strategy is also affected. As we explain
in Section IV-C, we focus on TinySTM as it implements a
broad range of these mechanisms. Additionally, we observe
similar variations within the same STM system for its
different possible configurations.

As a conclusion, it is a hard problem to determine a
suitable thread mapping strategy for a STM application
considering both STM system and platform characteristics.
The dynamic behavior of the STM system makes it even
more non-trivial, since the same application can behave
differently for each STM configuration. In the next section,
we describe our solution to tackle this problem. We propose
a machine learning-based approach to predict thread map-
ping strategies based on the STM system, application and
platform characteristics.

III. APPLYING MACHINE LEARNING TO
THREAD MAPPING

Machine Learning (ML) [11], [12], [13] has become a
common component of approaches to model the behavior
of complex interactions between applications, systems and
platforms. It provides a portable solution to predict the
behavior of new combinations of application/system, also
called instances, based on a priori profiled runs. ML-based
approaches share a common framework that is usually com-
posed of a static and a dynamic phase. The static phase is
subdivided in the following three major steps: i) application
profiling; ii) data pre-processing and feature selection; and
iii) learning process. Its target is to build up a predictor to be

1The results for Bayes on TL2 are not available due to incompatibilities
between the benchmark code and the TL2 library.

It is hard to determine a suitable thread mapping strategy of a STM 
application considering both STM system and platform characteristics.

Choosing a thread mapping for TM applications is complex...

WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012

Our approach:
Machine Learning



ML to Thread Mapping on STM

Why Machine Learning (ML)?
Can model the behavior of complex interactions between 
applications, STM systems and platforms
Portable solution to predict future behaviors based on a priori 
profiled runs

Proposal
Use of ML to automatically infer a suitable thread mapping 
strategy to be applied considering the application, STM system 
and platform characteristics 

7WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012



Application
Profiling Pre-Processing Learning

Process

Applications (1 to n)
Learning phase

ML to Thread Mapping on STM

8WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012



Application
Profiling Pre-Processing Learning

Process

Applications (1 to n)
Learning phase

ML to Thread Mapping on STM

8

Profiling information (features):
• Tx time ratio (%)
• Tx abort ratio (%)
• Conflict detection and resolution policies:

• eager/lazy
• suicide/backoff

• LLC miss ratio (%)

Performance metric: execution time
• Thread mapping strategies:

• linux
• compact
• scatter
• round-robin

WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012



Application
Profiling Pre-Processing Learning

Process

Applications (1 to n)
Learning phase

ML to Thread Mapping on STM

8

• Normalize/convert features
• Simple discretization: 

• low [0.0; 0.33] 
• medium [0.34; 0.66] 
• high [0.67; 1.0]

WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012



Application
Profiling Pre-Processing Learning

Process

Applications (1 to n)
Learning phase

ML to Thread Mapping on STM

8WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012

 ID3 Algorithm



Application
Profiling Pre-Processing Learning

Process

Applications (1 to n)
Learning phase

ML to Thread Mapping on STM

8

Tx Abort 
Ratio

LLC Miss 
Ratio

high

compactmedium

round-robin

medium / high

TM Conflict 
Detection

low

linux

lazy

TM Conflict 
Resolution

eager

compact

round-robin

backoff

suicide

round-robin

low

feature target variable
thread mapping

Example

Predictor

WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012



Application
Profiling

Application n+1

Application
Profiling Pre-Processing Learning

Process

Applications (1 to n)
Learning phase

ML to Thread Mapping on STM

8

Tx Abort 
Ratio

LLC Miss 
Ratio

high

compactmedium

round-robin

medium / high

TM Conflict 
Detection

low

linux

lazy

TM Conflict 
Resolution

eager

compact

round-robin

backoff

suicide

round-robin

low

feature target variable
thread mapping

Example

Predictor

WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012



Static Thread Mapping

Experimental evaluation (HiPC’11)
Profile several TM applications from STAMP
Construct the ML-based predictor
Apply the predicted thread mapping strategy statically:

At the beginning of the execution of the application
Remains unchanged during the whole execution

9WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012



Static Thread Mapping

10

(a) SMP-24

(b) SMP-16

 0

 1

 2

 3

 4

 5

 6

 7

Bayes Genome Intruder Kmeans Labyrinth Ssca2 Vacation Yada Average

Av
er

ag
e 

Sp
ee

du
p

 

Linux
Scatter

Compact
Round-Robin

ML
Oracle

 0

 1

 2

 3

 4

 5

 6

Bayes Genome Intruder Kmeans Labyrinth Ssca2 Vacation Yada Average

Av
er

ag
e 

Sp
ee

du
p

 

Linux
Scatter

Compact
Round-Robin

ML
Oracle

Figure 5. The average speedup of all benchmarks considering the fixed thread mapping strategies, our ML approach and the oracle on both platforms.

with low cache miss ratio and very dynamic behavior. This
is the case of Bayes on SMP-16 in which the lazy detection
mechanism contributes to reduce the number of false aborts
compared to the eager mechanism.

Finally, the cross-validation method allows to quantify the
accuracy of a decision tree or any other predictor. The accu-
racy is calculated dividing the number of correctly predicted
instances by the total number of instances. Respectively, the
accuracies on the SMP-24 and SMP-16 platforms were 86%
and 72%. In the next section we show that although the
accuracy is not higher than 90%, the average performance
achieved is comparable to the oracle.

C. Predicting the Thread Mapping Strategy
Figure 5 shows the average speedup over all benchmarks

considering the fixed thread mapping strategies, our ML
approach and the oracle. Particularly, the speedups of the
four STM configurations (eager/lazy X suicide/backoff) for
a specific thread mapping strategy, as shown in Figure 3,
are averaged and reduced to a single bar. The main idea
is to show the performance of each application and thread
mapping strategy considering all STM configurations at the
same time. In the last column, it also presents the overall
average speedup for each strategy.

The oracle is an upper bound strategy that always choose
the best thread mapping strategy for each application/STM/-
platform configuration. As a result, the oracle can achieve
average speedup higher than the best fixed mapping strategy

due to application performance variations across multiple
STM configurations. In the ML-based version, for each
configuration, the prediction is based on a decision tree
trained without that specific configuration.

Overall, on the SMP-16 and SMP-24 platforms the ML-
based approach presented average performance improve-
ments of 18.46% and 11.35% respectively compared to the
worst case and 6.37% and 3.21% over the Linux default
strategy. On both cases, the ML-based approach is within
1% of the oracle performance.

In Genome on SMP-16, the Compact strategy leads to
32% less performance than the oracle. This confirms that
choosing the wrong thread mapping strategy can lead to
high performance loss. On the other hand, Compact has 18%
better performance on average compared to the other fixed
strategies on Yada for the same platform. This suggests that a
flexible approach to select the most suitable thread mapping
strategy is required. In fact, the ML-based approach is equal
to the oracle on Yada.

In cases in which a single thread mapping strategy
is sensitive to application/STM features, the ML solution
achieves much higher average speedup compared to these
single strategies. This stems from the fact that the machine
learning approach considers the STM system and application
features to choose a thread mapping strategy. This reduces
the variability and leads to higher speedups, as we observe
in Bayes.

WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012



Static Thread Mapping

10

(a) SMP-24

(b) SMP-16

 0

 1

 2

 3

 4

 5

 6

 7

Bayes Genome Intruder Kmeans Labyrinth Ssca2 Vacation Yada Average

Av
er

ag
e 

Sp
ee

du
p

 

Linux
Scatter

Compact
Round-Robin

ML
Oracle

 0

 1

 2

 3

 4

 5

 6

Bayes Genome Intruder Kmeans Labyrinth Ssca2 Vacation Yada Average

Av
er

ag
e 

Sp
ee

du
p

 

Linux
Scatter

Compact
Round-Robin

ML
Oracle

Figure 5. The average speedup of all benchmarks considering the fixed thread mapping strategies, our ML approach and the oracle on both platforms.

with low cache miss ratio and very dynamic behavior. This
is the case of Bayes on SMP-16 in which the lazy detection
mechanism contributes to reduce the number of false aborts
compared to the eager mechanism.

Finally, the cross-validation method allows to quantify the
accuracy of a decision tree or any other predictor. The accu-
racy is calculated dividing the number of correctly predicted
instances by the total number of instances. Respectively, the
accuracies on the SMP-24 and SMP-16 platforms were 86%
and 72%. In the next section we show that although the
accuracy is not higher than 90%, the average performance
achieved is comparable to the oracle.

C. Predicting the Thread Mapping Strategy
Figure 5 shows the average speedup over all benchmarks

considering the fixed thread mapping strategies, our ML
approach and the oracle. Particularly, the speedups of the
four STM configurations (eager/lazy X suicide/backoff) for
a specific thread mapping strategy, as shown in Figure 3,
are averaged and reduced to a single bar. The main idea
is to show the performance of each application and thread
mapping strategy considering all STM configurations at the
same time. In the last column, it also presents the overall
average speedup for each strategy.

The oracle is an upper bound strategy that always choose
the best thread mapping strategy for each application/STM/-
platform configuration. As a result, the oracle can achieve
average speedup higher than the best fixed mapping strategy

due to application performance variations across multiple
STM configurations. In the ML-based version, for each
configuration, the prediction is based on a decision tree
trained without that specific configuration.

Overall, on the SMP-16 and SMP-24 platforms the ML-
based approach presented average performance improve-
ments of 18.46% and 11.35% respectively compared to the
worst case and 6.37% and 3.21% over the Linux default
strategy. On both cases, the ML-based approach is within
1% of the oracle performance.

In Genome on SMP-16, the Compact strategy leads to
32% less performance than the oracle. This confirms that
choosing the wrong thread mapping strategy can lead to
high performance loss. On the other hand, Compact has 18%
better performance on average compared to the other fixed
strategies on Yada for the same platform. This suggests that a
flexible approach to select the most suitable thread mapping
strategy is required. In fact, the ML-based approach is equal
to the oracle on Yada.

In cases in which a single thread mapping strategy
is sensitive to application/STM features, the ML solution
achieves much higher average speedup compared to these
single strategies. This stems from the fact that the machine
learning approach considers the STM system and application
features to choose a thread mapping strategy. This reduces
the variability and leads to higher speedups, as we observe
in Bayes.

6.4% better 
than Linux

3.2% better
than Linux

WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012



Static Thread Mapping

10

(a) SMP-24

(b) SMP-16

 0

 1

 2

 3

 4

 5

 6

 7

Bayes Genome Intruder Kmeans Labyrinth Ssca2 Vacation Yada Average

Av
er

ag
e 

Sp
ee

du
p

 

Linux
Scatter

Compact
Round-Robin

ML
Oracle

 0

 1

 2

 3

 4

 5

 6

Bayes Genome Intruder Kmeans Labyrinth Ssca2 Vacation Yada Average

Av
er

ag
e 

Sp
ee

du
p

 

Linux
Scatter

Compact
Round-Robin

ML
Oracle

Figure 5. The average speedup of all benchmarks considering the fixed thread mapping strategies, our ML approach and the oracle on both platforms.

with low cache miss ratio and very dynamic behavior. This
is the case of Bayes on SMP-16 in which the lazy detection
mechanism contributes to reduce the number of false aborts
compared to the eager mechanism.

Finally, the cross-validation method allows to quantify the
accuracy of a decision tree or any other predictor. The accu-
racy is calculated dividing the number of correctly predicted
instances by the total number of instances. Respectively, the
accuracies on the SMP-24 and SMP-16 platforms were 86%
and 72%. In the next section we show that although the
accuracy is not higher than 90%, the average performance
achieved is comparable to the oracle.

C. Predicting the Thread Mapping Strategy
Figure 5 shows the average speedup over all benchmarks

considering the fixed thread mapping strategies, our ML
approach and the oracle. Particularly, the speedups of the
four STM configurations (eager/lazy X suicide/backoff) for
a specific thread mapping strategy, as shown in Figure 3,
are averaged and reduced to a single bar. The main idea
is to show the performance of each application and thread
mapping strategy considering all STM configurations at the
same time. In the last column, it also presents the overall
average speedup for each strategy.

The oracle is an upper bound strategy that always choose
the best thread mapping strategy for each application/STM/-
platform configuration. As a result, the oracle can achieve
average speedup higher than the best fixed mapping strategy

due to application performance variations across multiple
STM configurations. In the ML-based version, for each
configuration, the prediction is based on a decision tree
trained without that specific configuration.

Overall, on the SMP-16 and SMP-24 platforms the ML-
based approach presented average performance improve-
ments of 18.46% and 11.35% respectively compared to the
worst case and 6.37% and 3.21% over the Linux default
strategy. On both cases, the ML-based approach is within
1% of the oracle performance.

In Genome on SMP-16, the Compact strategy leads to
32% less performance than the oracle. This confirms that
choosing the wrong thread mapping strategy can lead to
high performance loss. On the other hand, Compact has 18%
better performance on average compared to the other fixed
strategies on Yada for the same platform. This suggests that a
flexible approach to select the most suitable thread mapping
strategy is required. In fact, the ML-based approach is equal
to the oracle on Yada.

In cases in which a single thread mapping strategy
is sensitive to application/STM features, the ML solution
achieves much higher average speedup compared to these
single strategies. This stems from the fact that the machine
learning approach considers the STM system and application
features to choose a thread mapping strategy. This reduces
the variability and leads to higher speedups, as we observe
in Bayes.

18.5% better than
the worst case

11.3% better than
the worst case

WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012



Static Thread Mapping

10

(a) SMP-24

(b) SMP-16

 0

 1

 2

 3

 4

 5

 6

 7

Bayes Genome Intruder Kmeans Labyrinth Ssca2 Vacation Yada Average

Av
er

ag
e 

Sp
ee

du
p

 

Linux
Scatter

Compact
Round-Robin

ML
Oracle

 0

 1

 2

 3

 4

 5

 6

Bayes Genome Intruder Kmeans Labyrinth Ssca2 Vacation Yada Average

Av
er

ag
e 

Sp
ee

du
p

 

Linux
Scatter

Compact
Round-Robin

ML
Oracle

Figure 5. The average speedup of all benchmarks considering the fixed thread mapping strategies, our ML approach and the oracle on both platforms.

with low cache miss ratio and very dynamic behavior. This
is the case of Bayes on SMP-16 in which the lazy detection
mechanism contributes to reduce the number of false aborts
compared to the eager mechanism.

Finally, the cross-validation method allows to quantify the
accuracy of a decision tree or any other predictor. The accu-
racy is calculated dividing the number of correctly predicted
instances by the total number of instances. Respectively, the
accuracies on the SMP-24 and SMP-16 platforms were 86%
and 72%. In the next section we show that although the
accuracy is not higher than 90%, the average performance
achieved is comparable to the oracle.

C. Predicting the Thread Mapping Strategy
Figure 5 shows the average speedup over all benchmarks

considering the fixed thread mapping strategies, our ML
approach and the oracle. Particularly, the speedups of the
four STM configurations (eager/lazy X suicide/backoff) for
a specific thread mapping strategy, as shown in Figure 3,
are averaged and reduced to a single bar. The main idea
is to show the performance of each application and thread
mapping strategy considering all STM configurations at the
same time. In the last column, it also presents the overall
average speedup for each strategy.

The oracle is an upper bound strategy that always choose
the best thread mapping strategy for each application/STM/-
platform configuration. As a result, the oracle can achieve
average speedup higher than the best fixed mapping strategy

due to application performance variations across multiple
STM configurations. In the ML-based version, for each
configuration, the prediction is based on a decision tree
trained without that specific configuration.

Overall, on the SMP-16 and SMP-24 platforms the ML-
based approach presented average performance improve-
ments of 18.46% and 11.35% respectively compared to the
worst case and 6.37% and 3.21% over the Linux default
strategy. On both cases, the ML-based approach is within
1% of the oracle performance.

In Genome on SMP-16, the Compact strategy leads to
32% less performance than the oracle. This confirms that
choosing the wrong thread mapping strategy can lead to
high performance loss. On the other hand, Compact has 18%
better performance on average compared to the other fixed
strategies on Yada for the same platform. This suggests that a
flexible approach to select the most suitable thread mapping
strategy is required. In fact, the ML-based approach is equal
to the oracle on Yada.

In cases in which a single thread mapping strategy
is sensitive to application/STM features, the ML solution
achieves much higher average speedup compared to these
single strategies. This stems from the fact that the machine
learning approach considers the STM system and application
features to choose a thread mapping strategy. This reduces
the variability and leads to higher speedups, as we observe
in Bayes.

ML-based approach is within 1% of the oracle performance!
WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012



Dynamic Thread Mapping

It is expected that more complex applications will make 
use of TM in a near future

TM support on GCC 4.7, Intel “Haswell” processor, ...

Need of more dynamic approaches for thread mapping
Applications may be composed of more diverse workloads
Workloads may go through different execution phases
Each phase can potentially have different transactional 
characteristics 

11WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012



Dynamic Thread Mapping

12WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012

Dynamic approach
1. t transactions are profiled at runtime
2. the profiled information is used by the ML-based predictor
3. the thread mapping strategy is applied and remains unchanged during w
4. repeat 1, 2 and 3 until the application ends

Application execution with dynamic thread mapping

Parameters t and w:
Specified by the number of committed transactions
Hill-climbing strategy to automatically adapt them at runtime

Transactional Memory
Application

transactions

Dynamic Thread 
Mapping

Application
Profiling Prediction Deployment

t

w

ex
ec

ut
io

n 
lin

es



Dynamic Thread Mapping

13WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012

Implementation in TinySTM
Modular structure can be easily extended with new features
mod_dtm: module for transparent dynamic thread mapping6

STM core Modules

TinySTM
mod_mem

Dynamic Memory Management

mod_stats
Statistics of Transactions

mod_dtm
Dynamic Thread Mapping

... Hardware Topology Analyzer

Thread Mapping Predictor
Transaction Profiler

Fig. 3. Implementation of our dynamic thread mapping in TinySTM.

Hardware topology analyzer uses the Hardware Locality (hwloc) library
[1] to gather useful information from the underlying platform topology (i.e., the
hierarchy of caches and how they are shared among the cores). Such information
is used to correctly apply the thread mapping strategies.

Thread mapping predictor relies on the decision tree shown in Figure 2
to predict the thread mapping strategy. At the end of each profiling period, the
tree is traversed using the profiled information from the transaction profiler and
the resulting thread mapping strategy is then applied.

Transaction profiler performs runtime profiling during specific periods to
gather information from hardware counters and transactional basic statistics. Its
pseudo-code is depicted in Figure 4. The cache miss ratio is obtained through the
Performance Application Programming Interface (PAPI) [12] to access hardware
counters. We maintain two counters to calculate the abort ratio (named Aborts

and Commits). The transactional time ratio is an approximation obtained by
measuring the time spent inside and outside transactions.

// on transaction start
if is profiling period then

if first tx in this period then

StartPapi(LLCAccess, LLCMiss);
ProfileTime GetClock();

end

TxTime GetClock();
end

// on transaction abort
if is profiling period then

Aborts Aborts+ 1;
end

// on transaction commit
if is profiling period then

TxTime GetClock()� TxTime;
TotalTxTime TotalTxTime+ TxTime;
Commits Commits+ 1;
if last tx in this period then

StopPapi(LLCAccess, LLCMiss);
ProfileTime GetClock()� ProfileTime;
TotalNonTxTime ProfileTime� TotalTxTime;
ThreadMapping TMPredictor();
ResetAllCounters();

end

end

Fig. 4. Transaction profiler pseudo-codes.

TinySTM allows the inclusion of user-defined extensions. In our case, we
instrumented three basic TM operations that are called when transactions start
(start), when they are rollbacked in case of conflicts (abort) and when they finish
successfully (commit). Thus, every call to these operations is intercepted by our
module, which executes the transaction profiler during the profilling periods and
calls the thread mapping predictor to switch the thread mapping strategy when
necessary.

Components
Hardware Topology Analyzer: gathers information from the platform
Thread Mapping Predictor: decision tree generated by the ML
Transaction Profiler: performs runtime profiling



Dynamic Thread Mapping
Experimental evaluation

We used EigenBench to create applications with different phases
We varied 4 out of 8 orthogonal transactional characteristics, assuming 
two possible discrete values for each one

14WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012

7

When a TM application is executed, only one thread among all concurrent
running threads is chosen to be the transaction profiler. The reason for that is
twofold: (i) it considerably reduces the intrusiveness on the overall system, so the
behavior of the application is not changed, and (ii) we do not need to use extra
synchronization mechanisms to guarantee reliable measures among concurrent
threads.

4 Experimental Evaluation

In this section, we demonstrate that our dynamic thread mapping can benefit
from applications composed of multiple execution phases with potentially di↵er-
ent transactional behavior on each one. First, we describe our experimental setup
as well as the set of characteristics we considered to create TM applications com-
posed of multiple phases. Afterwards, we compare our performance gains with
static solutions. Finally, we present a deeper analysis of our mechanism.

4.1 Experimental Setup

Since most of the transactions within each STAMP application usually have
very similar behavior, they are not suitable for the evaluation of our dynamic
thread mapping approach. For this reason, we used EigenBench [8] to create new
TM applications with di↵erent phases. This micro-benchmark allows a thorough
exploitation of the orthogonal space of TM applications characteristics.

Varying all possible orthogonal TM characteristics involves a high-dimensional
search space [8]. Thus, we decided to vary 4 out of 8 orthogonal characteristics
that govern the behavior of TM applications. We used three of them to create a
set of workloads (Table 1). Since we assume two possible discrete values for each
one, we can create a total of 23 distinct workloads (named W1,W2, . . . ,W8) by
combining those values. The fourth orthogonal characteristic is concurrency and
it is further discussed in Section 4.3.

Table 1. The three TM characteristics used to compose our set of workloads.

Characteristic Definition Values

Tx Length number of shared accesses per transaction
short ( 64)
long (� 128)

Contention probability of conflict
low-conflicting (< 30%)
contentious (� 30%)

Density

fraction of the time spent inside transactions sparse (< 80%)
to the total execution time dense (� 80%)

We conducted our experiments on a multi-core platform based on four six-
core 2.66GHz Intel Xeon X7460 processors and 64 GB of RAM running Linux
2.6.32. Each processor has 16MB of shared L3 cache and each group of two
cores shares a L2 cache (3MB). TinySTM and all applications were compiled
with GCC 4.4.5 using -O3. All results in the following sections are based on
arithmetic means of 30 runs.

All possible combinations generate 8 different workloads (W1, ..., W8)
We created applications with 3 phases, thus each application will be 
composed by 3 distinct workloads 

A1 = {W1, W2, W3}, A2 = {W1, W2, W4}, ..., A56 = {W5, W6, W7}
Phases are parallelized using Pthreads and there is no synchronization 
barrier between phases



Dynamic Thread Mapping

15WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012

Performance gains: 
Up to 31% and 62% when comparing to the best and worst single thread 
mappings respectively

-10
 0

 10
 20
 30
 40
 50
 60
 70

A1 A2 A3 A4 A5 A6 A7 A8 A9 A1
0

A1
1

A1
2

A1
3

A1
4

A1
5

A1
6

A1
7

A1
8

A1
9

A2
0

A2
1

A2
2

A2
3

A2
4

A2
5

A2
6

A2
7

A2
8

R
el

at
iv

e 
ga

in
 (%

)

 

Best static Worst static

-10
 0

 10
 20
 30
 40
 50
 60
 70

A2
9

A3
0

A3
1

A3
2

A3
3

A3
4

A3
5

A3
6

A3
7

A3
8

A3
9

A4
0

A4
1

A4
2

A4
3

A4
4

A4
5

A4
6

A4
7

A4
8

A4
9

A5
0

A5
1

A5
2

A5
3

A5
4

A5
5

A5
6

R
el

at
iv

e 
ga

in
 (%

)

 

Best static Worst static

-10
 0

 10
 20
 30
 40
 50
 60
 70

A1 A2 A3 A4 A5 A6 A7 A8 A9 A1
0

A1
1

A1
2

A1
3

A1
4

A1
5

A1
6

A1
7

A1
8

A1
9

A2
0

A2
1

A2
2

A2
3

A2
4

A2
5

A2
6

A2
7

A2
8

R
el

at
iv

e 
ga

in
 (%

)

 

Best static Worst staticDynamic / Best single thread mapping

-10
 0

 10
 20
 30
 40
 50
 60
 70

A1 A2 A3 A4 A5 A6 A7 A8 A9 A1
0

A1
1

A1
2

A1
3

A1
4

A1
5

A1
6

A1
7

A1
8

A1
9

A2
0

A2
1

A2
2

A2
3

A2
4

A2
5

A2
6

A2
7

A2
8

R
el

at
iv

e 
ga

in
 (%

)

 

Best static Worst staticDynamic / Worst single thread mapping



Dynamic Thread Mapping

16WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012

9

This can be easily observed when comparing the relative gains between the best
and worst single thread mappings. Secondly, our dynamic thread mapping usu-
ally improved the performance of the applications by switching to an adequate
thread mapping strategy in each phase. We achieved performance gains up to
31% and 62%, when comparing to the best and worst single thread mappings
respectively. However, our dynamic thread mapping did not deliver performance
improvements on 3 applications and presented some performance losses in 8 ap-
plications when comparing with the best single thread mapping strategy. In the
case of A10, A11 and A46, a single thread mapping strategy (compact) was best
for all phases, thus we cannot expect performance improvements by using our
dynamic approach. The performance losses were due to wrong decisions of the
predictor, which did not select the best thread mapping strategy on all phases.
The maximum performance loss was about 8% (A43).

4.3 Varying Concurrency

Our second set of experiments focuses on the performance impacts of the thread
mapping strategies when varying the number of threads. We selected 4 inter-
esting cases. Cases 1 and 2 are applications that presented a single best thread
mapping strategy for all thread counts. Cases 3 and 4 are applications whose
the best single thread mapping varied according to the number of threads.

Number of threads

Case 1 (A1) Case 2 (A47)

Case 3 (A50) Case 4 (A6)

 10

 15

 20

 25

 30

 35

2 4 8 16
 5

 10

 15

 20

 25

2 4 8 16

 10

 15

 20

 25

 30

 35

2 4 8 16
 10

 15

 20

 25

 30

 35

 40

2 4 8 16

E
xe

cu
tio

n 
tim

e 
(s

)

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

2 4 8 16

Compact
Round-Robin

Scatter
Linux

Dynamic

Fig. 6. Execution times when varying the number of threads.

Figure 6 compares the execution times of the four single thread mapping
strategies with our dynamic thread mapping mechanism. Results represent mean
execution times of 30 executions with 95% confidence intervals. We do not con-
sider more than 16 threads for two reasons: (i) placing threads on di↵erent cores
when all available cores are used does not impact the overall performance because
the applications tend to communicate uniformly, and (ii) most of our workloads
did not scale beyond 16 threads.

Varying concurrency



Conclusions

Predicting a suitable thread mapping strategy for TM 
applications is not trivial

Applications with different behaviors
Several conflict detection and resolution mechanisms
Platform specifics

ML-based approach to thread mapping for TM applications
Automatically infer an appropriate thread mapping
Application, STM system and platform are taken into account
Portable and can be easily extended to consider other features

Future works
Extend the predictor to consider a broader range of conflict detection 
and resolution policies
Consider more TM characteristics to build more diverse applications
Use other ML algorithms to build new predictors

17WTM 2012: Euro-TM Workshop on Transactional Memory - Bern, Switzerland - April 10, 2012


