PolyCert: Polymorphic Self-Optimizing Replication for In-Memory Transactional Grids

Maria Couceiro, Paolo Romano, Luis Rodrigues

INESC-ID Instituto Superior Tecnico, Universidade Tecnica de Lisboa

WDTM - 22 February 2012

Index

Introduction

2 Certification Protocols

3 PolyCert

4 Evaluation

5 Summary

- In-memory transactional data grids are an alternative to relational distributed databases
- Key/value store data model
 - Spurred out of the NoSQL movement
- In-memory storage
 - Durability via replication
- Higher performance, scalability and elasticity
- Example of target applications: distributed transactional memory

- Transactional Memory is a powerful paradigm to develop concurrent applications
- Programmers only need to identify sequences of instructions that access/modify concurrent objects
- Results: more reliable code and shorter development time

Replication

- Key mechanism to ensure data durability in case of failures
- Algorithms inspired in the replication of database systems
- Different protocols behave differently according to the workload
- Static configurations may lead to sub-optimal performances

We need a dynamic solution capable of guaranteeing the best performance in any possible scenario

Replication

- Key mechanism to ensure data durability in case of failures
- Algorithms inspired in the replication of database systems
- Different protocols behave differently according to the workload
- Static configurations may lead to sub-optimal performances

We need a dynamic solution capable of guaranteeing the best performance in any possible scenario

Replication

- Key mechanism to ensure data durability in case of failures
- Algorithms inspired in the replication of database systems
- Different protocols behave differently according to the workload
- Static configurations may lead to sub-optimal performances

We need a dynamic solution capable of guaranteeing the best performance in any possible scenario

Index

Introduction

2 Certification Protocols

3 PolyCert

4 Evaluation

5 Summary

• Transactions execute locally

- When they are ready to commit, a message is atomically broadcast to the network
- Replicas validate the transaction when this message is received
 - A transaction may commit if its read set is still valid (i.e., no other transaction has updated the read set)
- The transaction is committed or discarded based on the outcome of the validation

- Message contents
- Validation process

- Transactions execute locally
- When they are ready to commit, a message is atomically broadcast to the network
- Replicas validate the transaction when this message is received
 - A transaction may commit if its read set is still valid (i.e., no other transaction has updated the read set)
- The transaction is committed or discarded based on the outcome of the validation

- Message contents
- Validation process

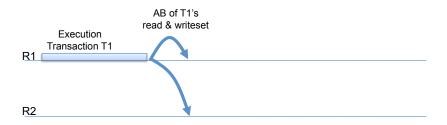
- Transactions execute locally
- When they are ready to commit, a message is atomically broadcast to the network
- Replicas validate the transaction when this message is received
 - A transaction may commit if its read set is still valid (i.e., no other transaction has updated the read set)
- The transaction is committed or discarded based on the outcome of the validation

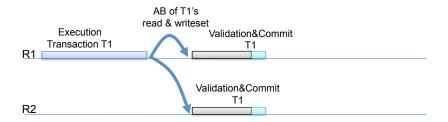
- Message contents
- Validation process

- Transactions execute locally
- When they are ready to commit, a message is atomically broadcast to the network
- Replicas validate the transaction when this message is received
 - A transaction may commit if its read set is still valid (i.e., no other transaction has updated the read set)
- The transaction is committed or discarded based on the outcome of the validation

- Message contents
- Validation process

- Transactions execute locally
- When they are ready to commit, a message is atomically broadcast to the network
- Replicas validate the transaction when this message is received
 - A transaction may commit if its read set is still valid (i.e., no other transaction has updated the read set)
- The transaction is committed or discarded based on the outcome of the validation


- Message contents
- Validation process


- Non Voting
- Bloom Filter Certification
- Voting

R2

Execution Transaction T1 R1

R2

Message

Read and write set

Validation

Each replica validates using the received read set

Pros:

Simple validation process

Cons:

• Potentially large messages

Message

Read and write set

Validation

Each replica validates using the received read set

Pros:

• Simple validation process

Cons:

• Potentially large messages

Message

Read and write set

Validation

Each replica validates using the received read set

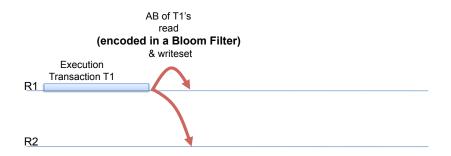
Pros:

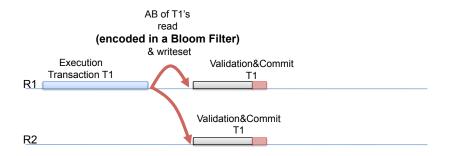
Simple validation process

Cons:

• Potentially large messages

Bloom filters:


- Space-efficient data structure for test membership queries
- Probabilistic answer to "Is elem contained in BF?"
 - No false negatives: a "no" answer is always correct
 - False positives: A "yes" answer may be false
- Compression is a function of a (tunable) false positive rate



R2

R2

Message

Read set encoded in a Bloom filter and write set

Validation

Test if any items written by concurrent transactions are in the Bloom filter

Pros:

• Reduce network traffic:

1% false positive up to 30x message compression

Cons:

- False positives
 - additional (deterministic) aborts

Message

Read set encoded in a Bloom filter and write set

Validation

Test if any items written by concurrent transactions are in the Bloom filter

Pros:

- Reduce network traffic:
 - 1% false positive up to 30x message compression

Cons:

- False positives
 - additional (deterministic) aborts

Message

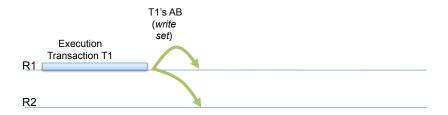
Read set encoded in a Bloom filter and write set

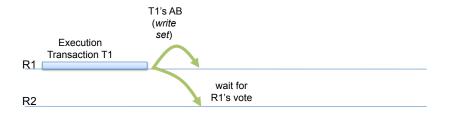
Validation

Test if any items written by concurrent transactions are in the Bloom filter

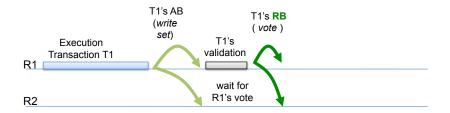
Pros:

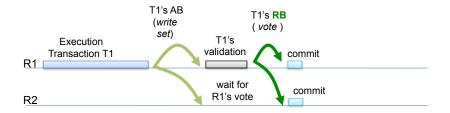
- Reduce network traffic:
 - 1% false positive up to 30x message compression


Cons:


- False positives
 - additional (deterministic) aborts

R2


Execution Transaction T1 R1


R2

Voting

Message

Write set

Validation

- Only the replica that executed the transaction can validate it
- When it receives this message
 - Checks if read set is valid
 - Sends the outcome to all replicas (Reliable Broadcast)

Pros:

Short messages

Cons:

Two communication steps

Voting

M	es	sa	ıg	е
---	----	----	----	---

Write set

Validation

- Only the replica that executed the transaction can validate it
- When it receives this message
 - Checks if read set is valid
 - Sends the outcome to all replicas (Reliable Broadcast)

Pros:

Short messages

Cons:

• Two communication steps

Voting

Μ	es	sa	ge
---	----	----	----

Write set

Validation

- Only the replica that executed the transaction can validate it
- When it receives this message
 - Checks if read set is valid
 - Sends the outcome to all replicas (Reliable Broadcast)

Pros:

Short messages

Cons:

• Two communication steps

Throughput Comparison

Bank Benchmark

- Synthetic benchmark simulating transfers of funds
- Fixed read set sizes: 1, 1.000, 100.000
- No conflicts

Throughput varies greatly with the protocol used

Throughput Comparison

Bank Benchmark

- Synthetic benchmark simulating transfers of funds
- Fixed read set sizes: 1, 1.000, 100.000
- No conflicts

Throughput varies greatly with the protocol used

Throughput Comparison

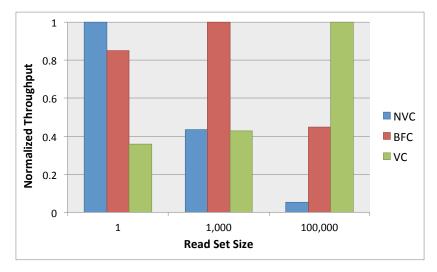


Figure: Throughput of three certification strategies with different read-set sizes.

Read Set Distribution

- Performance strongly depends on the size of the read sets
- Real applications exhibit very heterogeneous workloads

STMBench7

- Benchmark for Transactional Memories
- Complex benchmark with very heterogeneous transactions
- Operations that manipulate a graph with a significant number of objects strongly interconnected

Read Set Distribution

- Performance strongly depends on the size of the read sets
- Real applications exhibit very heterogeneous workloads

STMBench7

- Benchmark for Transactional Memories
- Complex benchmark with very heterogeneous transactions
- Operations that manipulate a graph with a significant number of objects strongly interconnected

Read Set Distribution

- Performance strongly depends on the size of the read sets
- Real applications exhibit very heterogeneous workloads

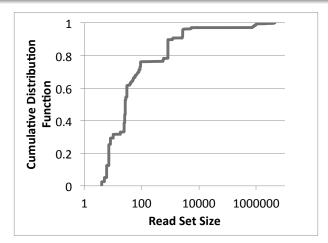


Figure: Distribution of transaction read set size in the STMBench7.

PolyCert

- Protocol choice heavily influences the system throughput
- PolyCert:
 - the co-existence of protocols
 - to predict the most appropriate per-transaction

Index

Introduction

Certification Protocols Protocols

PolyCert

PolyCert Protocol

- Replication Protocol Selector Oracle
- Off-line Machine Learning Techniques
- On-line Reinforcement Learning

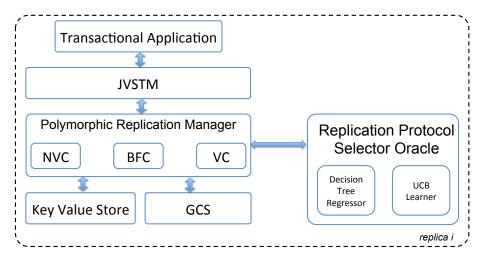
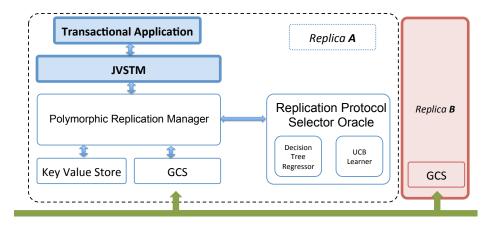
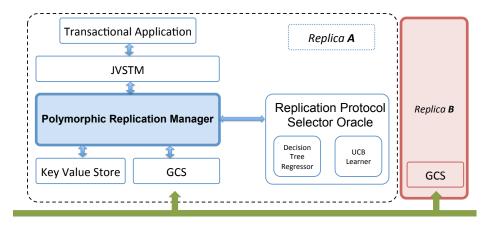
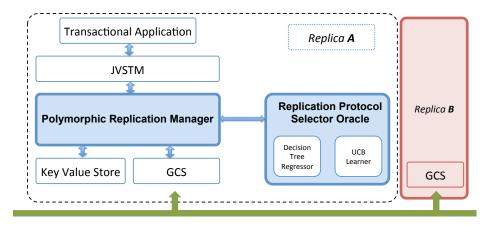
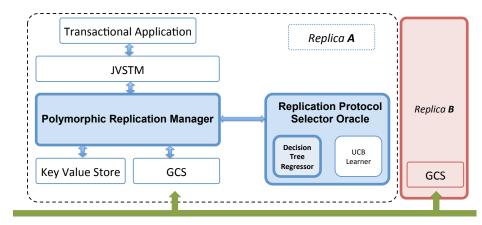
Evaluation

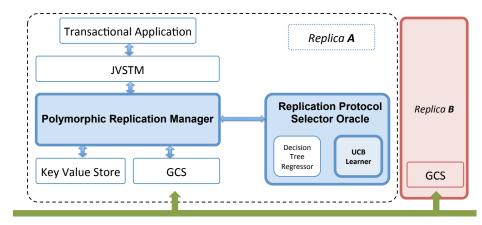
Evaluation

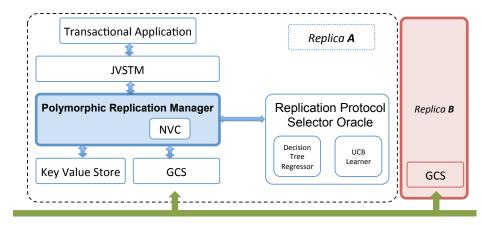
5 Summary

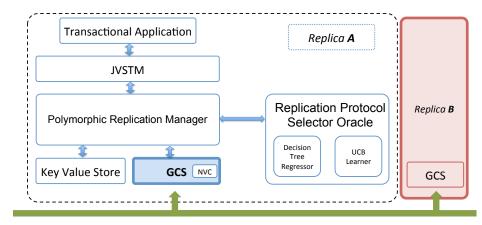
Summary

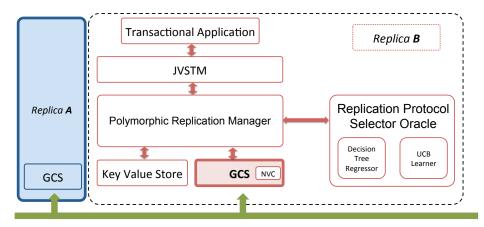
Architecture

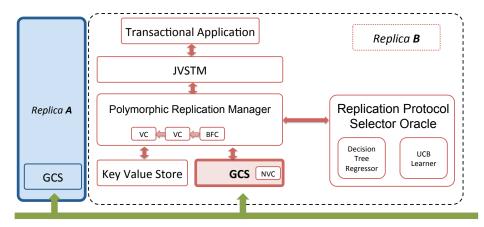






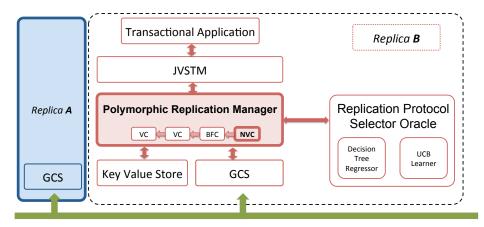

Figure: Architectural Overview (Single Node Perspective)

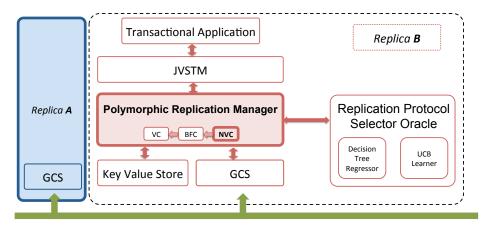


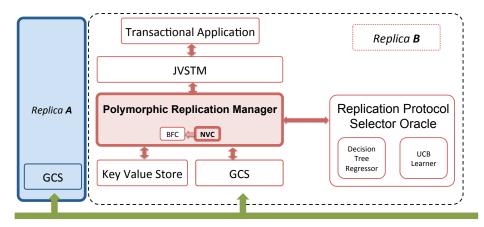


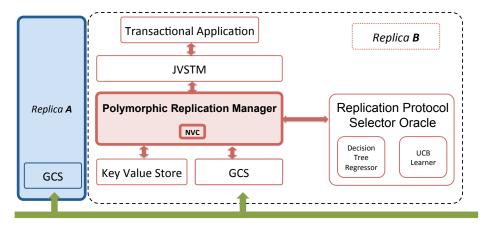


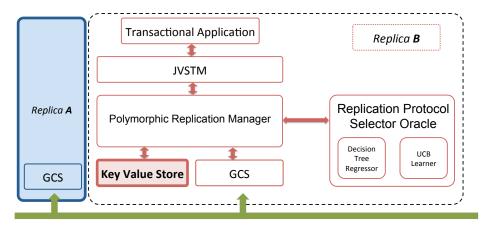












Index

Introduction

Certification Protocols Protocols

PolyCert

- PolyCert Protocol
- Replication Protocol Selector Oracle
- Off-line Machine Learning Techniques
- On-line Reinforcement Learning

Evaluation

Evaluation

5 Summary

Summary

Replication Protocol Selector Oracle

Two implementations:

- Off-line Machine Learning Technique: Decision Trees
 - Pros: No learning during the execution of the system
 - Cons: Computational intensive training phase
- On-line Reinforcement Learning: UCB
 - Pros: Adapts easily to change
 - Cons: Needs to learn while the system is running

Replication Protocol Selector Oracle

Two implementations:

• Off-line Machine Learning Technique: Decision Trees

- Pros: No learning during the execution of the system
- Cons: Computational intensive training phase
- On-line Reinforcement Learning: UCB
 - Pros: Adapts easily to change
 - Cons: Needs to learn while the system is running

Off-line Machine Learning Techniques

For each transaction:

- Predict size of AB message m for the various certification schemes
- Forecast AB latency for each message size.
 - Regression Decision trees
- Forecast the time for marshalling and validation for each protocol
 BFC: forecast the time to build and populate the Bloom filter

Choose the protocol with the smallest commit latency

Off-line Machine Learning Techniques

For each transaction:

- Predict size of AB message m for the various certification schemes
- Forecast AB latency for each message size.
 - Regression Decision trees
- Forecast the time for marshalling and validation for each protocol
 BFC: forecast the time to build and populate the Bloom filter

Choose the protocol with the smallest commit latency

Off-line Machine Learning Techniques

- Uses up to 53 monitored system attributes:
 - CPU
 - Memory
 - Network
 - Time-series
- Requires computational intensive training phase

Replication Protocol Selector Oracle

Two implementations:

- Off-line Machine Learning Technique: Decision Trees
 - Pros: No learning during the execution of the system
 - Cons: Computational intensive training phase
- On-line Reinforcement Learning: UCB
 - Pros: Adapts easily to change
 - Cons: Needs to learn while the system is running

On-line Reinforcement Learning

Each replica builds on-line expectations on the rewards of each protocol:

- no assumption on the rewards' distributions
- updates the knowledge of the oracle while the system is running

Tackles the exploration-exploitation dilemma:

• did I test this option sufficiently in this scenario?

On-line Reinforcement Learning

Each replica builds on-line expectations on the rewards of each protocol:

- no assumption on the rewards' distributions
- updates the knowledge of the oracle while the system is running

Tackles the exploration-exploitation dilemma:

• did I test this option sufficiently in this scenario?

On-line Reinforcement Learning

Distinguishes workload scenario solely based on read-set's size

exponential discretization intervals to minimize training time

Optimization: DistUCB

Replicas exchange statistical information periodically to boost learning

On-line Reinforcement Learning

Distinguishes workload scenario solely based on read-set's size

exponential discretization intervals to minimize training time

Optimization: DistUCB

Replicas exchange statistical information periodically to boost learning

Index

Introduction

2 Certification Protocols

3 PolyCert

Summary

Evaluation

Four benchmarks:

- Bank Benchmark 1
- Bank Benchmark 1000
- Bank Benchmark 100000
- STMBench7

- Compare the throughput of the certification protocols and PolyCert
- Read set: 1 item

- Compare the throughput of the certification protocols and PolyCert
- Read set: 1 item

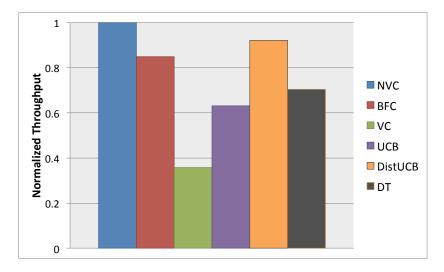


Figure: Normalized throughput of PolyCert and static protocols

• Compare the throughput of the certification protocols and PolyCert

• Read set: 1000 items

- Compare the throughput of the certification protocols and PolyCert
- Read set: 1000 items

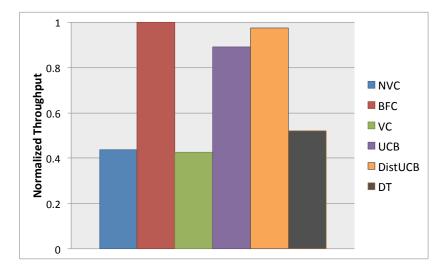


Figure: Normalized throughput of PolyCert and static protocols

• Compare the throughput of the certification protocols and PolyCert

• Read set: 100.000 items

- Compare the throughput of the certification protocols and PolyCert
- Read set: 100.000 items

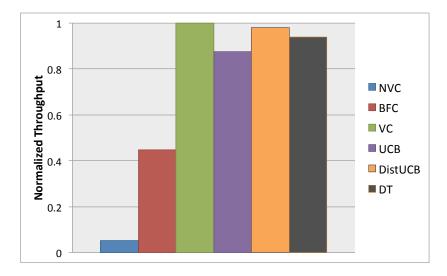


Figure: Normalized throughput of PolyCert and static protocols

Bank Benchmark - Highlight

- Compare the evolution of the throughput of UCB and Distributed UCB when the workload changes
- Read set: 100000 items

Distributed UCB converges faster than UCB

Bank Benchmark - Highlight

- Compare the evolution of the throughput of UCB and Distributed UCB when the workload changes
- Read set: 100000 items

Distributed UCB converges faster than UCB

Bank Benchmark - Highlight

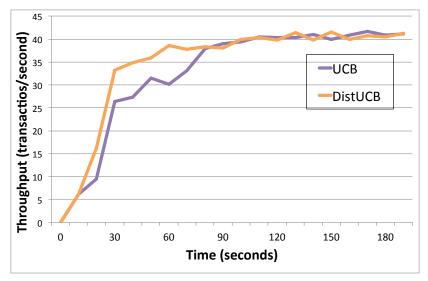


Figure: Evolution of throughput over time with UCB and DIST-UCB

Compare the throughput of the best performing static certification protocol with PolyCert

PolyCert's throughput is higher than the best performing static certification protocol

 Compare the throughput of the best performing static certification protocol with PolyCert

PolyCert's throughput is higher than the best performing static certification protocol

STMBench7

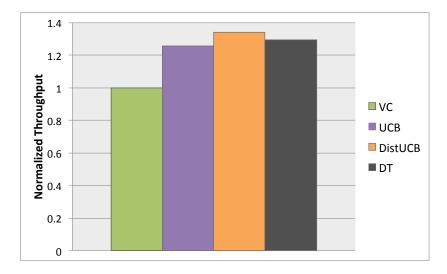


Figure: Normalized throughput of the adaptive and VC protocols

Index

Introduction

2 Certification Protocols

3 PolyCert

Summary

- PolyCert: Polymorphic Self-Optimizing Certification
- Allows the co-existence of multiple certification protocols
- Machine-learning techniques to determine the best certification strategy per transaction
- Logic associated with the on-line choice of the replication strategy encapsulated into a generic oracle
- Achieves speed-ups when compared to static protocols
- Increases the robustness of the replicated data platform

Thank You