
WG5: Applications &
Performance
Evaluation

Pascal Felber
pascal.felber@unine.ch

Friday, May 20, 2011

mailto:pascal.felber@unine.ch
mailto:pascal.felber@unine.ch

Goals of STM

• Simplify concurrent computing...
(like sequential programming)
...while providing good performance...
(like fine-grained locking or custom
concurrent algorithms)
...and “usable” semantics...
(e.g., progress)
...for a wide range of applications

• Are these goals compatible?

Friday, May 20, 2011

Simplicity?
(vs. semantics)

Friday, May 20, 2011

Simplicity?
(vs. semantics)

Strong atomicity

Weak atomicity

Privatization

Obstruction-free

Blocking

“Almost” wait-free

Linearizable

Serializable
Disjoint-access-parallel

Open nesting

Closed nesting

Opaque

Publication
Boosting

Snapshot isolation

Friday, May 20, 2011

Performance?
(vs. semantics)

• Performance: what metrics?
• Throughput vs. scalability vs.

#aborts? Progress? Fairness?
• Also depends on semantics

• Weaker semantics make TM faster...
(less guarantees to provide)

...but make programming harder
(make sure application remains correct)

Friday, May 20, 2011

81 2 4 6

4

0

1

2

3

cores

Sp
ee

du
p

Blocking - Weak atomicity

Blocking - Strong atomicity

Obstruction-free - Weak atomicity

Obstruction-free - Strong atomicity

+ Privatization, etc...

Performance?
(vs. semantics)

Friday, May 20, 2011

Performance?
(vs. semantics)

Stronger semantics

B
et

te
r

p
er

fo
rm

an
ce

Existing STMs

Anything here?

Friday, May 20, 2011

Applications?

• TM is not good for all applications
• There should be some conflicts...

(otherwise no synchronization necessary)

...but not too many...
(otherwise pessimistic CC is better)

...with not-too-long transactions...
(to keep the cost of aborts reasonable)

...involving data not known statically
(otherwise no simpler than locks)

Friday, May 20, 2011

Workload properties
Transaction length, number of atomic blocks and

call frequency, read-only vs. update, ...

Friday, May 20, 2011

1: Snapshot isolation

• Widely used in DBs
• Read from initial snapshot, commit

if no write-write conflict
• In TM, performance gain negligible,

higher programming complexity
• Must add writes to force conflicts

• Bottom line: SI not (very) useful
for TMs, bad for programmer

Friday, May 20, 2011

2: Serializability

• More concurrency, sufficiently strong
for the programmer

• Must keep track of conflict graph
• Runtime overhead, little benefits

(higher C-A ratio, lower throughput!)
• Useful only if aborts are costly (e.g.,

ms+ transactions)
• Right workload for TM?

• Bottom line: not very useful for TMs

Friday, May 20, 2011

3. CM

• Many CM proposed in the literature
• Kill self/other, older, shorter, nearer

to completion, ..., or wait
• Differ in terms of complexity and

(progress) guarantees
• Performance of CM depends on the

types of conflicts in the workload

Friday, May 20, 2011

3. CM

threads

T
h
ro

u
g

h
p

u
t

Bank: Without CM

Tra
nsfe

rs

Long TXs

threads

T
h
ro

u
g

h
p

u
t

Bank: With CM

Transfers

Long TXs

Fairness between
different types of
transactions often

degrades “raw
throughput” (right

metrics?)

Any clear
winner?

[Scherer,Scott]

• Bottom line: unless fairness required,
use simple all-around CM

Friday, May 20, 2011

4. Early release & elastic

• Early release tells TM that memory
location will not be accessed anymore
• Not trivial to use (2PL)

• Elastic transactions can be cut at
runtime into sub-transactions
• Must tag elastic transactions

• Bottom line: better performance,
less conflicts, but harder to use

Friday, May 20, 2011

Which semantics?

• Keep it simple (for the programmer)
• E.g., snapshot isolation, causal

serializability hard to reason about
• E.g., SGLA: familiar to developer,

simple operational semantics
• Weak is fine if well specified, easy to

use, and noticeable performance gain
• What is dis-/allowed by a specific

model

Friday, May 20, 2011

What performance?

• Even more than simplicity of use,
good performance is necessary for
wide adoption of STMs
• Need HTM or HyTM?

• Performance measured in terms of
• Scalability (exploit many cores)
• Speedup over sequential

Friday, May 20, 2011

Scalable ≠ fast

321 8 16 24

cores

Sp
ee

d
u
p

Friday, May 20, 2011

Scalable ≠ fast

321 8 16 24

0

1

cores

Sp
ee

d
u
p

Friday, May 20, 2011

Wrapping up

• Balance between simple semantics
and efficient implementation

• Adoption: standardization, (multiple)
language support, HW support?

• There is no one-size-fits-all TM
• Effectiveness depends on workload
• Often: simple+scalable but slow

• Still looking for good TM applications!

Friday, May 20, 2011

