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Goals of STM 

• Simplify concurrent computing...
(like sequential programming)
...while providing good performance...
(like fine-grained locking or custom 
concurrent algorithms)
...and “usable” semantics...
(e.g., progress)
...for a wide range of applications

• Are these goals compatible?
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Simplicity?
(vs. semantics)

Friday, May 20, 2011



Simplicity?
(vs. semantics)

Strong atomicity

Weak atomicity

Privatization

Obstruction-free

Blocking

“Almost” wait-free

Linearizable

Serializable
Disjoint-access-parallel

Open nesting

Closed nesting

Opaque

Publication
Boosting

Snapshot isolation
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Performance?
(vs. semantics)

• Performance: what metrics?
• Throughput vs. scalability vs. 

#aborts? Progress? Fairness?
• Also depends on semantics

• Weaker semantics make TM faster...
(less guarantees to provide)

...but make programming harder
(make sure application remains correct)
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Blocking - Weak atomicity

Blocking - Strong atomicity

Obstruction-free - Weak atomicity

Obstruction-free - Strong atomicity

+ Privatization, etc...

Performance?
(vs. semantics)
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Performance?
(vs. semantics)
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Applications?

• TM is not good for all applications
• There should be some conflicts...

(otherwise no synchronization necessary)

...but not too many...
(otherwise pessimistic CC is better)

...with not-too-long transactions...
(to keep the cost of aborts reasonable)

...involving data not known statically 
(otherwise no simpler than locks)
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Workload properties
Transaction length, number of atomic blocks and 

call frequency, read-only vs. update, ...
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1: Snapshot isolation

• Widely used in DBs
• Read from initial snapshot, commit 

if no write-write conflict
• In TM, performance gain negligible, 

higher programming complexity
• Must add writes to force conflicts

• Bottom line: SI not (very) useful 
for TMs, bad for programmer
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2: Serializability

• More concurrency, sufficiently strong 
for the programmer

• Must keep track of conflict graph
• Runtime overhead, little benefits 

(higher C-A ratio, lower throughput!)
• Useful only if aborts are costly (e.g., 

ms+ transactions)
• Right workload for TM?

• Bottom line: not very useful for TMs
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3. CM

• Many CM proposed in the literature
• Kill self/other, older, shorter, nearer 

to completion, ..., or wait
• Differ in terms of complexity and 

(progress) guarantees
• Performance of CM depends on the 

types of conflicts in the workload
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3. CM
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Bank: With CM

Transfers

Long TXs

Fairness between 
different types of 
transactions often 

degrades “raw 
throughput” (right 

metrics?)

Any clear 
winner?

[Scherer,Scott]

• Bottom line: unless fairness required, 
use simple all-around CM
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4. Early release & elastic

• Early release tells TM that memory 
location will not be accessed anymore
• Not trivial to use (2PL)

• Elastic transactions can be cut at 
runtime into sub-transactions
• Must tag elastic transactions

• Bottom line: better performance, 
less conflicts, but harder to use
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Which semantics?

• Keep it simple (for the programmer)
• E.g., snapshot isolation, causal 

serializability hard to reason about
• E.g., SGLA: familiar to developer, 

simple operational semantics
• Weak is fine if well specified, easy to 

use, and noticeable performance gain
• What is dis-/allowed by a specific 

model
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What performance?

• Even more than simplicity of use, 
good performance is necessary for 
wide adoption of STMs
• Need HTM or HyTM?

• Performance measured in terms of
• Scalability (exploit many cores)
• Speedup over sequential
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Scalable ≠ fast 
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Wrapping up

• Balance between simple semantics 
and efficient implementation

• Adoption: standardization, (multiple) 
language support, HW support?

• There is no one-size-fits-all TM
• Effectiveness depends on workload
• Often: simple+scalable but slow

• Still looking for good TM applications!
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