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Aborts in STM 

EuroTM 2011 

  Forceful aborts – an algorithm suspects correctness 
violation 

  
  Aborting transactions is bad 

  work is lost 
  resources are wasted 
  overall throughput decreases 
  danger of livelock 
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Multi-versioning in STM 
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  Keeping multiple versions can prevent aborts 
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GC challenge 
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  Must clean up the old versions 
  Some existing TMs keep a list of n past versions 

  some kept versions are useless 
  some potentially useful versions are removed 
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Memory growth 
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  k versions => k times more memory?  
  No! It can be much worse… 
  Consider pointer-based data structures 
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Permissiveness in multi-versioned STM 
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  Multi-Versioned (MV)-Permissiveness 
  each read-only transaction commits 
  an update transaction aborts only if it conflicts with another update 

transaction 

  Practical – satisfied by Vboxes, SMV 
  would have been achieved by most multi-versioned algorithms 
  if they had kept all the needed object versions 

  Responsive STM 
  a txn operation does not wait for other transactions to invoke new 

txn operations 
  to avoid trivial “global lock” solutions (no aborts and no concurrency) 
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Space optimality for MV-permissiveness 
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  Space optimality 
  An MV-permissive STM1 is space optimal if for any MV-

permissive STM2 at any point of time:  
 #versions in STM1 ≤ #versions in STM2 

  No responsive MV-permissive STM can be space 
optimal 

  Sometimes, it’s impossible to know whether to 
remove an old version  
  could save the need to keep other versions in future 



MV permissiveness vs DAP 
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  Disjoint Access Parallelism (DAP) property: txns 
with disjoint data sets do not contend (no “common 
bottleneck”)  

  A responsive MV-permissive STM cannot be DAP 
  Intuitively, contention point is “responsible” for real-

time order guarantee 
  can forfeit RTO and satisfy DAP  
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SMV: Selective Multi-Versioning STM 
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  Responsive and MV-Permissive 
  each read-only transaction commits 
  cannot be space-optimal 
  cannot be DAP 

  Versions are kept as long as they might be needed 
  Read-only transactions are invisible to other 

transactions 
  do not change data that can be read by others 
  avoids cache thrashing 



GC challenge 
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  No transaction can know whether a given version 
can be removed 
  explicit GC is not possible 

  A version is removed when 
it has no potential readers  

  Readers are invisible 
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Automated GC in SMV 
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  Solution: use auxiliary GC threads provided by 
managed memory systems 
  remove unreachable object versions 

  Read-only transactions are invisible to other 
transactions, but visible to the “see-all” GC threads 
  theoretically visible 
  practically invisible 

 GC threads run infrequently 
 does not add cache-coherency overhead 



SMV overview 
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SMV GC 
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SMV performance 
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  Great for read-dominated workloads 
  especially with long read operations (snapshot, aggregation, etc.) 

  Low overhead if there are no read-only transactions at all 

STMBench7 read-dominated Vacation 



Conclusions 
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  Multi-versioning can improve STM performance 
  especially useful for long read-only transactions  

  Keeping a constant number of versions is not efficient 
  not every needed version can be found 
  exponential memory growth 

  MV-permissiveness imposes overheads of its own 
  cannot be space efficient 
  cannot be DAP 

  SMV uses automatic GC capabilities for deleting old 
versions 
  the readers stay invisible 
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