
I D I T K E I D A R
D M I T R I P E R E L M A N

R U I F A N

EuroTM 2011

Maintaining Multiple Versions in
Software Transactional Memory

1

Aborts in STM

EuroTM 2011

  Forceful aborts – an algorithm suspects correctness
violation

  Aborting transactions is bad

  work is lost
  resources are wasted
  overall throughput decreases
  danger of livelock

2

Multi-versioning in STM

EuroTM 2011

  Keeping multiple versions can prevent aborts

3

o1

o2
C C

cannot read the
latest version – read

the previous one

o1

o2
C

cannot read the
latest version –

abort

A

T1 T2 T1 T2

Single-versioned STM Multi-versioned STM

GC challenge

EuroTM 2011

4

  Must clean up the old versions
  Some existing TMs keep a list of n past versions

  some kept versions are useless
  some potentially useful versions are removed

o1

o2

The sixth
version is
removed

The needed
version has been

removed

A

TM keeps the last
5 versions

Past versions are
kept though they
will never be read

T1 T2

Memory growth

EuroTM 2011

5

  k versions => k times more memory?
  No! It can be much worse…
  Consider pointer-based data structures

10	 20	 30	 10	 20	 40	

30	

10	 25	 40	

30	 20	

10	

25	 50	

30	

20	

40	

10	

25	

60	

30	

20	

40	

50	

replace 30
with 40

replace 20
with 25

replace 40
with 50

replace 50
with 60

Complete binary
tree for a linked

list

Permissiveness in multi-versioned STM

EuroTM 2011

  Multi-Versioned (MV)-Permissiveness
  each read-only transaction commits
  an update transaction aborts only if it conflicts with another update

transaction

  Practical – satisfied by Vboxes, SMV
  would have been achieved by most multi-versioned algorithms
  if they had kept all the needed object versions

  Responsive STM
  a txn operation does not wait for other transactions to invoke new

txn operations
  to avoid trivial “global lock” solutions (no aborts and no concurrency)

6

Space optimality for MV-permissiveness

EuroTM 2011

7

  Space optimality
  An MV-permissive STM1 is space optimal if for any MV-

permissive STM2 at any point of time:
 #versions in STM1 ≤ #versions in STM2

  No responsive MV-permissive STM can be space
optimal

  Sometimes, it’s impossible to know whether to
remove an old version
  could save the need to keep other versions in future

MV permissiveness vs DAP

EuroTM 2011

  Disjoint Access Parallelism (DAP) property: txns
with disjoint data sets do not contend (no “common
bottleneck”)

  A responsive MV-permissive STM cannot be DAP
  Intuitively, contention point is “responsible” for real-

time order guarantee
  can forfeit RTO and satisfy DAP

8

SMV: Selective Multi-Versioning STM

EuroTM 2011

9

  Responsive and MV-Permissive
  each read-only transaction commits
  cannot be space-optimal
  cannot be DAP

  Versions are kept as long as they might be needed
  Read-only transactions are invisible to other

transactions
  do not change data that can be read by others
  avoids cache thrashing

GC challenge

EuroTM 2011

10

  No transaction can know whether a given version
can be removed
  explicit GC is not possible

  A version is removed when
it has no potential readers

  Readers are invisible

o1

o2
C

T1 T2
o1

o2
C

T2

Kept Removed

Indistinguishable

Automated GC in SMV

EuroTM 2011

11

  Solution: use auxiliary GC threads provided by
managed memory systems
  remove unreachable object versions

  Read-only transactions are invisible to other
transactions, but visible to the “see-all” GC threads
  theoretically visible
  practically invisible

 GC threads run infrequently
 does not add cache-coherency overhead

SMV overview

EuroTM 2011

12

curPoint

time point 9

T1

ver = 5

o1

data5

o1

o2 ver = 5

o2

data5

C

time point 10

ver = 10 ver = 10

data10 data10

T1 T2

weak references
to prev versions

ver ≤ start time?

The value
to be read

SMV GC

EuroTM 2011

13

curPoint

time point 9

o1

data5

o1

o2

o2

data5
C

time point 10

ver = 10 ver = 10

data10 data10

C

time point 11

T1 T2

T1

  Unneeded versiones are GCed automatically

SMV performance

EuroTM 2011

14

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

1	 4	 16	 32	 64	

Tr
an

sa
c'
on

s/
se
c	

Threads	

SMV	

8-‐ver	

2-‐ver	

TL2	

TL2	 w/	 TP	

RWLock	

0	

20000	

40000	

60000	

80000	

100000	

120000	

140000	

160000	

1	 4	 16	 32	 64	

Tr
an

sa
c'
on

s/
se
c	

Threads	

SMV	

8-‐ver	

2-‐ver	

TL2	

TL2	 w/	 TP	

RWLock	

  Great for read-dominated workloads
  especially with long read operations (snapshot, aggregation, etc.)

  Low overhead if there are no read-only transactions at all

STMBench7 read-dominated Vacation

Conclusions

EuroTM 2011

15

  Multi-versioning can improve STM performance
  especially useful for long read-only transactions

  Keeping a constant number of versions is not efficient
  not every needed version can be found
  exponential memory growth

  MV-permissiveness imposes overheads of its own
  cannot be space efficient
  cannot be DAP

  SMV uses automatic GC capabilities for deleting old
versions
  the readers stay invisible

References

EuroTM 2011

16

  On Maintaining Multiple Versions in STM
  Perelman, Keidar, Fan, PODC’10

  SMV: Selective Multi-Versioning STM
  Perelman, Byshevsky, Litmanovich, Keidar, submitted

