
I D I T K E I D A R
D M I T R I P E R E L M A N

R U I F A N

EuroTM 2011

Maintaining Multiple Versions in
Software Transactional Memory

1

Aborts in STM

EuroTM 2011

  Forceful aborts – an algorithm suspects correctness
violation

  Aborting transactions is bad

  work is lost
  resources are wasted
  overall throughput decreases
  danger of livelock

2

Multi-versioning in STM

EuroTM 2011

  Keeping multiple versions can prevent aborts

3

o1

o2
C C

cannot read the
latest version – read

the previous one

o1

o2
C

cannot read the
latest version –

abort

A

T1 T2 T1 T2

Single-versioned STM Multi-versioned STM

GC challenge

EuroTM 2011

4

  Must clean up the old versions
  Some existing TMs keep a list of n past versions

  some kept versions are useless
  some potentially useful versions are removed

o1

o2

The sixth
version is
removed

The needed
version has been

removed

A

TM keeps the last
5 versions

Past versions are
kept though they
will never be read

T1 T2

Memory growth

EuroTM 2011

5

  k versions => k times more memory?
  No! It can be much worse…
  Consider pointer-based data structures

10	
 20	
 30	
 10	
 20	
 40	

30	

10	
 25	
 40	

30	
 20	

10	

25	
 50	

30	

20	

40	

10	

25	

60	

30	

20	

40	

50	

replace 30
with 40

replace 20
with 25

replace 40
with 50

replace 50
with 60

Complete binary
tree for a linked

list

Permissiveness in multi-versioned STM

EuroTM 2011

  Multi-Versioned (MV)-Permissiveness
  each read-only transaction commits
  an update transaction aborts only if it conflicts with another update

transaction

  Practical – satisfied by Vboxes, SMV
  would have been achieved by most multi-versioned algorithms
  if they had kept all the needed object versions

  Responsive STM
  a txn operation does not wait for other transactions to invoke new

txn operations
  to avoid trivial “global lock” solutions (no aborts and no concurrency)

6

Space optimality for MV-permissiveness

EuroTM 2011

7

  Space optimality
  An MV-permissive STM1 is space optimal if for any MV-

permissive STM2 at any point of time:
 #versions in STM1 ≤ #versions in STM2

  No responsive MV-permissive STM can be space
optimal

  Sometimes, it’s impossible to know whether to
remove an old version
  could save the need to keep other versions in future

MV permissiveness vs DAP

EuroTM 2011

  Disjoint Access Parallelism (DAP) property: txns
with disjoint data sets do not contend (no “common
bottleneck”)

  A responsive MV-permissive STM cannot be DAP
  Intuitively, contention point is “responsible” for real-

time order guarantee
  can forfeit RTO and satisfy DAP

8

SMV: Selective Multi-Versioning STM

EuroTM 2011

9

  Responsive and MV-Permissive
  each read-only transaction commits
  cannot be space-optimal
  cannot be DAP

  Versions are kept as long as they might be needed
  Read-only transactions are invisible to other

transactions
  do not change data that can be read by others
  avoids cache thrashing

GC challenge

EuroTM 2011

10

  No transaction can know whether a given version
can be removed
  explicit GC is not possible

  A version is removed when
it has no potential readers

  Readers are invisible

o1

o2
C

T1 T2
o1

o2
C

T2

Kept Removed

Indistinguishable

Automated GC in SMV

EuroTM 2011

11

  Solution: use auxiliary GC threads provided by
managed memory systems
  remove unreachable object versions

  Read-only transactions are invisible to other
transactions, but visible to the “see-all” GC threads
  theoretically visible
  practically invisible

 GC threads run infrequently
 does not add cache-coherency overhead

SMV overview

EuroTM 2011

12

curPoint

time point 9

T1

ver = 5

o1

data5

o1

o2 ver = 5

o2

data5

C

time point 10

ver = 10 ver = 10

data10 data10

T1 T2

weak references
to prev versions

ver ≤ start time?

The value
to be read

SMV GC

EuroTM 2011

13

curPoint

time point 9

o1

data5

o1

o2

o2

data5
C

time point 10

ver = 10 ver = 10

data10 data10

C

time point 11

T1 T2

T1

  Unneeded versiones are GCed automatically

SMV performance

EuroTM 2011

14

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

1	
 4	
 16	
 32	
 64	

Tr
an

sa
c'
on

s/
se
c	

Threads	

SMV	

8-­‐ver	

2-­‐ver	

TL2	

TL2	
 w/	
 TP	

RWLock	

0	

20000	

40000	

60000	

80000	

100000	

120000	

140000	

160000	

1	
 4	
 16	
 32	
 64	

Tr
an

sa
c'
on

s/
se
c	

Threads	

SMV	

8-­‐ver	

2-­‐ver	

TL2	

TL2	
 w/	
 TP	

RWLock	

  Great for read-dominated workloads
  especially with long read operations (snapshot, aggregation, etc.)

  Low overhead if there are no read-only transactions at all

STMBench7 read-dominated Vacation

Conclusions

EuroTM 2011

15

  Multi-versioning can improve STM performance
  especially useful for long read-only transactions

  Keeping a constant number of versions is not efficient
  not every needed version can be found
  exponential memory growth

  MV-permissiveness imposes overheads of its own
  cannot be space efficient
  cannot be DAP

  SMV uses automatic GC capabilities for deleting old
versions
  the readers stay invisible

References

EuroTM 2011

16

  On Maintaining Multiple Versions in STM
  Perelman, Keidar, Fan, PODC’10

  SMV: Selective Multi-Versioning STM
  Perelman, Byshevsky, Litmanovich, Keidar, submitted

