Maintaining Multiple Versions in
Software Transactional Memory

IDIT KEIDAR
DMITRI PERELMAN
RUI FAN

l o A

Technion

Israel Institute of
Technology

M

Aborts in STM

» Forceful aborts — an algorithm suspects correctness
violation

» Aborting transactions is bad
o work is lost
O resources are wasted
o overall throughput decreases
o danger of livelock

Multi-versioning in STM

3

» Keeping multiple versions can prevent aborts

~
. ¥

Single-versioned STM Multi-versioned STM
T1 Te T1 T2
02 @) 02 @~ e
C A \\\ C /,’,C /’:::= _______________________________
-- { cannotread the
J—— P . latest version — read !

cannot read the
latest version —

GC challenge

» Must clean up the old versions

* Some existing TMs keep a list of n past versions

o some kept versions are useless
o some potentially useful versions are removed

T1 T2
TM keeps thelast 01 —.
5 versions
02 = D S
,,,,,, o A T
P - , The needed
' The .s1xt.h Past versions are | version has been |
versionis kept though they removed
removed J will never be read

Memozgrowth
O,

» k versions => k times more memory?
o No! It can be much worse...
o Consider pointer-based data structures

”~ ~ ”~ ~ ”~ ~
/ \ / Lo \
322 3B,
replace 30 o replace 20 o o
=~ 7S
\ \
- ”7l\ s30 - ”7l\ s30—
| 20 \ 7N | 20 : TN
a~= "~ \ Y \
, \ 40 . . 40
replace 40 o 4~ - / replace 50 o <7
with 50 ’ with 60 @ PR

@ Complete binar; ° /

tree for a linked
list

EuroTM 2011

Permissiveness in multi-versioned STM

e Multi-Versioned (MV)-Permissiveness
o each read-only transaction commits

o an update transaction aborts only if it conflicts with another update
transaction

 Practical — satisfied by Vboxes, SMV

o would have been achieved by most multi-versioned algorithms
o if they had kept all the needed object versions

e Responsive STM

O atxn operation does not wait for other transactions to invoke new
txn operations

o to avoid trivial “global lock” solutions (no aborts and no concurrency)

Space optimality for MV-permissiveness

e Space optimality
o An MV-permissive STM1 is space optimal if for any MV-
permissive STM2 at any point of time:

= #versions in STM1 < #versions in STM2

* No responsive MV-permissive STM can be space
optimal
» Sometimes, it’s impossible to know whether to

remove an old version
o could save the need to keep other versions in future

MYV permissiveness vs DAP

8

 Disjoint Access Parallelism (DAP) property: txns
with disjoint data sets do not contend (no “common
bottleneck™)

e A responsive MV-permissive STM cannot be DAP

e Intuitively, contention point is “responsible” for real-
time order guarantee
can forfeit RTO and satisfy DAP

SMV: Selective Multi-Versioning STM

» Responsive and MV-Permissive
o each read-only transaction commits

o cannot be space-optimal
o cannot be DAP

» Versions are kept as long as they might be needed

» Read-only transactions are invisible to other
transactions
o do not change data that can be read by others
o avoids cache thrashing

GC challenge

10

e A version is removed when
it has no potential readers

» Readers are invisible

~

» No transaction can know whether a given version

can be removed
explicit GC is not possible

T1 T2 T2
o1 L Ingistin%uishaﬁle o1
02 —@ k 02 —¥
o C P AN C
. Kept ! . Removed

\,

Automated GC in SMV

11

 Solution: use auxiliary GC threads provided by
managed memory systems
remove unreachable object versions

» Read-only transactions are invisible to other
transactions, but visible to the “see-all” GC threads
theoretically visible

practically invisible
GC threads run infrequently
does not add cache-coherency overhead

SMYV overview

curPoint

e

.
~ -

EuroTM 2011

weak references
to prev versions

time point 9

time point 10

ver < start time?

o

~~~~~
s

s\
______

The value
to be read




* Unneeded versiones are GCed automatically

T1 T2

C

o1 &

02 &
C

curPoint

I,\\

< b time pointg —> time point 10 N time point 11

—————
L

.
~~~~~~


SMV performance

» Great for read-dominated workloads
o especially with long read operations (snapshot, aggregation, etc.)

» Low overhead if there are no read-only transactions at all

STMBench7 read-dominated Vacation
3500 160000
—H=—SMV == SMV
3000 - cooobeee 8-ver 4 140000 - ---h--- 8-ver
- —2_Ver - I -Z-Ver‘ :..?._\.s..
120000 - =
2500 | —& -TL2 1 — -T2 A
g =X+ TL2 w/ TP g 100000 | —X- - TL2w/ TP
22000 | 2 L
H ==+=-RWLock s ==+=:-RWLock
2 £ 80000 -
a a
& &
= = 60000 -
40000 =
= e e it TR 5
20000 | 7z«
0 T T T T
1 4 16 32 64
Threads Threads

Conclusions

15

e Multi-versioning can improve STM performance
especially useful for long read-only transactions

» Keeping a constant number of versions is not efficient
not every needed version can be found
exponential memory growth

» MV-permissiveness imposes overheads of its own

cannot be space efficient
cannot be DAP

» SMV uses automatic GC capabilities for deleting old
versions
the readers stay invisible

References

e On Maintaining Multiple Versions in STM
o Perelman, Keidar, Fan, PODC’10

* SMV: Selective Multi-Versioning STM

o Perelman, Byshevsky, Litmanovich, Keidar, submitted

