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Aborts in STM 
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  Forceful aborts – an algorithm suspects correctness 
violation 

  
  Aborting transactions is bad 

  work is lost 
  resources are wasted 
  overall throughput decreases 
  danger of livelock 
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Multi-versioning in STM 
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  Keeping multiple versions can prevent aborts 
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GC challenge 
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  Must clean up the old versions 
  Some existing TMs keep a list of n past versions 

  some kept versions are useless 
  some potentially useful versions are removed 
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Memory growth 
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  k versions => k times more memory?  
  No! It can be much worse… 
  Consider pointer-based data structures 
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Permissiveness in multi-versioned STM 
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  Multi-Versioned (MV)-Permissiveness 
  each read-only transaction commits 
  an update transaction aborts only if it conflicts with another update 

transaction 

  Practical – satisfied by Vboxes, SMV 
  would have been achieved by most multi-versioned algorithms 
  if they had kept all the needed object versions 

  Responsive STM 
  a txn operation does not wait for other transactions to invoke new 

txn operations 
  to avoid trivial “global lock” solutions (no aborts and no concurrency) 
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Space optimality for MV-permissiveness 
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  Space optimality 
  An MV-permissive STM1 is space optimal if for any MV-

permissive STM2 at any point of time:  
 #versions in STM1 ≤ #versions in STM2 

  No responsive MV-permissive STM can be space 
optimal 

  Sometimes, it’s impossible to know whether to 
remove an old version  
  could save the need to keep other versions in future 



MV permissiveness vs DAP 
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  Disjoint Access Parallelism (DAP) property: txns 
with disjoint data sets do not contend (no “common 
bottleneck”)  

  A responsive MV-permissive STM cannot be DAP 
  Intuitively, contention point is “responsible” for real-

time order guarantee 
  can forfeit RTO and satisfy DAP  
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SMV: Selective Multi-Versioning STM 
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  Responsive and MV-Permissive 
  each read-only transaction commits 
  cannot be space-optimal 
  cannot be DAP 

  Versions are kept as long as they might be needed 
  Read-only transactions are invisible to other 

transactions 
  do not change data that can be read by others 
  avoids cache thrashing 



GC challenge 
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  No transaction can know whether a given version 
can be removed 
  explicit GC is not possible 

  A version is removed when 
it has no potential readers  

  Readers are invisible 
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Automated GC in SMV 
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  Solution: use auxiliary GC threads provided by 
managed memory systems 
  remove unreachable object versions 

  Read-only transactions are invisible to other 
transactions, but visible to the “see-all” GC threads 
  theoretically visible 
  practically invisible 

 GC threads run infrequently 
 does not add cache-coherency overhead 



SMV overview 
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SMV GC 
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  Unneeded versiones are GCed automatically 



SMV performance 
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  Great for read-dominated workloads 
  especially with long read operations (snapshot, aggregation, etc.) 

  Low overhead if there are no read-only transactions at all 

STMBench7 read-dominated Vacation 
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  Multi-versioning can improve STM performance 
  especially useful for long read-only transactions  

  Keeping a constant number of versions is not efficient 
  not every needed version can be found 
  exponential memory growth 

  MV-permissiveness imposes overheads of its own 
  cannot be space efficient 
  cannot be DAP 

  SMV uses automatic GC capabilities for deleting old 
versions 
  the readers stay invisible 
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