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Aborts in STM

» Forceful aborts — an algorithm suspects correctness
violation

» Aborting transactions is bad
o work is lost
O resources are wasted
o overall throughput decreases
o danger of livelock




Multi-versioning in STM
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» Keeping multiple versions can prevent aborts
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GC challenge

» Must clean up the old versions

* Some existing TMs keep a list of n past versions

o some kept versions are useless
o some potentially useful versions are removed
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Memozgrowth
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» k versions => k times more memory?
o No! It can be much worse...
o Consider pointer-based data structures
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Permissiveness in multi-versioned STM

e Multi-Versioned (MV)-Permissiveness
o each read-only transaction commits

o an update transaction aborts only if it conflicts with another update
transaction

 Practical — satisfied by Vboxes, SMV

o would have been achieved by most multi-versioned algorithms
o if they had kept all the needed object versions

e Responsive STM

O atxn operation does not wait for other transactions to invoke new
txn operations

o to avoid trivial “global lock” solutions (no aborts and no concurrency)




Space optimality for MV-permissiveness

e Space optimality
o An MV-permissive STM1 is space optimal if for any MV-
permissive STM2 at any point of time:

= #versions in STM1 < #versions in STM2

* No responsive MV-permissive STM can be space
optimal
» Sometimes, it’s impossible to know whether to

remove an old version
o could save the need to keep other versions in future




MYV permissiveness vs DAP
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 Disjoint Access Parallelism (DAP) property: txns
with disjoint data sets do not contend (no “common
bottleneck™)

e A responsive MV-permissive STM cannot be DAP

e Intuitively, contention point is “responsible” for real-
time order guarantee
can forfeit RTO and satisfy DAP



SMV: Selective Multi-Versioning STM

» Responsive and MV-Permissive
o each read-only transaction commits

o cannot be space-optimal
o cannot be DAP

» Versions are kept as long as they might be needed

» Read-only transactions are invisible to other
transactions
o do not change data that can be read by others
o avoids cache thrashing




GC challenge
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e A version is removed when
it has no potential readers

» Readers are invisible
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» No transaction can know whether a given version

can be removed
explicit GC is not possible
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Automated GC in SMV
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 Solution: use auxiliary GC threads provided by
managed memory systems
remove unreachable object versions

» Read-only transactions are invisible to other
transactions, but visible to the “see-all” GC threads
theoretically visible

practically invisible
GC threads run infrequently
does not add cache-coherency overhead



SMYV overview
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* Unneeded versiones are GCed automatically
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SMV performance

» Great for read-dominated workloads
o especially with long read operations (snapshot, aggregation, etc.)

» Low overhead if there are no read-only transactions at all
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Conclusions
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e Multi-versioning can improve STM performance
especially useful for long read-only transactions

» Keeping a constant number of versions is not efficient
not every needed version can be found
exponential memory growth

» MV-permissiveness imposes overheads of its own

cannot be space efficient
cannot be DAP

» SMV uses automatic GC capabilities for deleting old
versions
the readers stay invisible
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