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Abstract

A flexible way of building modular communication stacks relies
on the use of protocol composition. In order to derive the worst-
case response time of a protocol composition, one needs to capture its
event-graph: the event-graph consists of the set of all events processed
by each component and how these events are related.

This paper describes a protocol composition framework that sim-
plifies the task of deriving the event-graph from the protocol imple-
mentation. The framework, called RT-Appia, takes a pragmatic ap-
proach: instead of requiring the use of domain specific code analysis
tools, or dedicated compilers, it simply requires protocol program-
mers to make explicit which events are processed and produced by
each layer, and how these events are related. The interest of the ap-
proach is that the same data structures are used not only to simplify
the task of computing the worst case response time of the protocol
composition, but also to optimize the performance and for debugging
the resulting implementation.

∗Sections of this report will be published in the Proceedings of the 5th IEEE Interna-
tional Workshop on Factory Communication Systems, Vienna, Austria, September 2004.
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1 Introduction

With the increase of processing power and network bandwidth it is possible
to build sophisticated distributed hard real-time systems. Many of these
systems benefit from communication services that enforce strong consistency
properties such as ordering and agreement at the communication level. The
construction of such communication systems using the composition of several
micro-protocol objects is an approach that has been applied with success in
the non real-time arena [8, 4, 14]. This encourages the re-use of protocol
components and allows the applications to configure stacks tailored to their
needs. To benefit from this approach in hard real-time systems, one must be
able to derive the timing behavior of a protocol composition.

In a previous paper [18], we have shown how the worst-case response
time of a protocol composition (WCRT) can be computed from a composi-
tion event-graph. An event graph is a structure that captures all the events
processed by each layer of a protocol composition. Furthermore, the event-
graph also captures the causality among these events. These relations are
useful as they can reduce the pessimism of the timing analysis. In particu-
lar, by identifying the offsets between related events, one can use the timing
analysis approach developed by Tindell in [16] to compute the WCRT of a
protocol composition.

One important practical problem is how to derive, in an automated form,
the event-graph from the protocol implementation. In fact, we are interested
in developing a tool that offers the programmer the possibility of coding each
layer only once, in such a way that both the executable and the information
required for timing analysis can be derived from the same source code. Fur-
thermore, the programmer should not be required to learn a new language,
or be required to annotate the source code with non-standard directives. Ide-
ally, all the information required for the operation of the framework should
be expressed in a programming language with a large user base, such as, for
instance, C++.

This paper presents the RT-Appia protocol composition and execution
framework. The framework has been implemented in C++ and supports
the development of real-time communication stacks based on the composi-
tion of micro-protocols. Individual micro-protocols are described as software
components that subscribe and produce events; interactions among adjacent
protocols are modeled by the exchange of these events. When implement-
ing a micro-protocol, the programmer provides information about the type
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of events it is interested to process, and which events may be generated in
response to those input events. Using this information, the tool is able to
extract the sequences of events that occur in a given protocol composition.
Therefore, without resorting to code analysis techniques, or to other form of
pre-compilation, the framework can extract all the information required to
derive the event-graph for the protocol composition. The event graph can
later be used to feed the timing-analysis tool described in [18].

An interesting aspect of the framework is that the data structures required
to derive the event-graph of a protocol composition are also used by the
execution environment to optimize the performance of the implementation
and make the code more robust by performing, upon demand, runtime checks
on the events produced by each layer. The high degree of integration among
the development, analysis, and execution environments greatly simplifies the
task of the programmer of complex real-time protocol stacks. To illustrate
the framework features, we use a group communication protocol designed for
the Controller Area Network (CAN) field-bus [13].

The paper is organized as follows: Section 2 motivates our work and
references related work. Section 3 introduces a case-study that is used to
motivate the mechanisms implemented by RT-Appia. Section 4 shows how
the event graph can be automatically derived from the protocol implemen-
tation by the RT-Appia framework. The merits and disadvantages of our
approach are discussed in Section 5. Section 6 concludes the paper.

2 Motivation and Related Work

Among others, an important goal of a framework to support the development
and execution of communication protocols is to simplify the task of program-
mers. This can be achieved by offering several complementary mechanisms
and services that cover the different aspects of protocol development, includ-
ing the design, the analysis, the implementation, and the execution of the
protocols:

• At the design level, the framework should encourage the re-use of code,
by allowing complex stacks to be created from the composition of micro-
protocols. This aspect is particularly relevant in the context of real-
time applications where, due to memory and power consumption con-
straints, it is interesting to execute in each node just the protocol layers
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required to support the desired functionality. This facet of RT-Appia
is discussed in Section 4.

• In the context of real-time systems, at the analysis level, the framework
should provide support to validate the timing-behavior of the resulting
protocol composition. In this paper, we focus our attention on the
support provided by RT-Appia to simplify the task of validating the
correctness of the protocol composition in the time domain.

• At the implementation level, the framework may (and usually does)
offer a library exporting a number of functions needed by the protocol
programmer, such as buffer management for data messages (including
primitives to add and remove headers from messages), timer manage-
ment, thread management, etc. In RT-Appia we also offer such func-
tionality, adapted to the requirements of real-time operation.

• At the execution level, the framework must implement the basic services
that support the execution of protocol modules, the communication and
synchronization among those modules, etc. A real-time communication
framework must also support the reservation of the resources required
by a communication channel, to ensure their availability during the
protocol execution. The RT-Appia not only supports pre-allocation of
the objects managed by the communication protocols, but also offers
mechanisms that allow to derive the size of the object pools in an
automated manner.

x-Kernel [12] is an earlier and influential protocol composition framework
that supports a composition model in which protocol stacks are structured
as a hierarchical graph of protocols. Protocols communicate by exchang-
ing messages. In order to promote the re-usability of protocols, messages
are exchanged indirectly, via the x-Kernel, through calls to push and pop
functions. Following the work of x-Kernel, many other protocol composi-
tion frameworks have been proposed, including Ensemble [8], CORDS [17],
Coyote [4], Cactus [9], Bast [7], and Appia [14]. In the following paragraphs,
we only devote our attention to the systems that have targeted real-time
environments.

CORDS is an extension of the x-Kernel system that includes resource
reservation mechanisms. Resources managed by CORDS include memory
allocation, CPU cycles (the ability to select the number of threads and their
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scheduling attributes) and network bandwidth. The “unit” of resource reser-
vation is called a path. The implementation is supported by the real-time
kernel OSF MK (derived from the Mach kernel [1]). The kernel’s Integrated
Time-Driven Scheduler (ITDS) allows the user to define several scheduling
policies. Thread synchronization mechanisms implement the priority inheri-
tance protocol to avoid priority inversion problems.

Cactus is a follow-up of Coyote, a system that augments the flexibility
of x-Kernel by allowing each protocol to be decomposed in a set of micro-
protocols. Each micro-protocol, in turn, is implemented as a set of event han-
dlers that communicate primarily through the exchange of events but may
also share memory. Cactus attempts to preserve the additional flexibility of
Coyote while providing support for real-time operation. Cactus is built on
top of CORDS, and each composition of micro-protocols, also called a com-
posite protocol, is implemented as a CORDS coarse grain protocol. Cactus
illustrates some of the advantages in customizing distributed real-time com-
munication services through the composition of finer-grain micro-protocols.
However, the worst-case execution time of a composite protocol may be dif-
ficult to estimate because of the need to know which events will be raised
within each micro-protocol event handler. This information can be provided
explicitly by the protocol designer or else it requires an additional tool to
identify it. In [10], a conservative estimate is used and all the events raised
are included in the computation even if they are raised in separate conditional
branches of an event handler.

None of the previous frameworks provides support for the analysis of
hard real-time communication systems, namely for the schedulability analysis
of protocol compositions. In contrast, this kind of support is one of the
important features of RT-Appia. Therefore, in this paper we describe the
most important RT-Appia mechanism that simplify the integration of the
schedulability analysis in the development process.

3 A Case-Study

3.1 A Simple Protocol Composition

To motivate our work, we use a very simple protocol composition consisting
of a stack of just three layers as depicted in Figure 1. The bottom layer
corresponds to the driver to the CAN network. The upper layer corresponds
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Application

ComCan

CAN

Figure 1: A simple stack with three layers.

to the application. The intermediate layer, “Committed Can” (ComCan) is a
simple reliable broadcast protocol for CAN, which is, in essence, a simplified
version of the protocols described in [15]. The algorithm executed at each of
these layers is depicted in Figure 2 using pseudo-code. In the next paragraph
we briefly describe the operation of this protocol composition.

Reliable multicast is enforced by a combination of the bare CAN proper-
ties, augmented by the ComCan algorithm. The rationale of the algorithm is
the following. It was shown by Rufino et al. [15] that reliability of a broadcast
in CAN is not ensured by the network if the sender of a message fails during
the transmission. Therefore, the “ComCan” algorithm only delivers a mes-
sage when it is sure that the sender did not crash during the transmission.
This information is provided by the sender, through the transmission of a
control message called the commit (hence, the name of the protocol). The
commit is retransmitted by all nodes, to ensure the delivery of the original
data message, in the event of the sender failure during the transmission of
the commit message. The reader may notice that this protocol is not very
efficient (the protocol presented here has been simplified for sake of concise-
ness). A more efficient, but also more sophisticated, version of a reliable
broadcast for CAN is described in [15].

It is also worth noting that the protocol description presented in Figure 2
is not fully modular, as each layer is aware of the adjacent layers (i.e., it
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Application:
upon event 〈 init 〉 do

m := payload (); trigger 〈 ComCan.TxDown, [ m ] 〉;
upon event 〈 Application.TxUp, [ m ] 〉 do

// process message m

ComCan:
upon event 〈 ComCan.TxDown, [ m ] 〉 do

id = newid (); trigger 〈 CAN.TxDown, [ data, id, m ] 〉;
upon event 〈 ComCan.TxCnf, [ data, id, m ] 〉 do

trigger 〈 CAN.TxDown, [ commit, id ] 〉;
upon event 〈 ComCan.TxUp, [ data, id, m ] 〉 do

buffer: = buffer ∪ {[ data, id, m ]};
trigger 〈 ComCan.comCanTimer, [ data, id, m ] 〉 with offset timer;

upon event 〈 ComCan.TxUp, [ commit, id ] 〉 do
if {[ data, id, m ]} ∈ buffer then

buffer := buffer \ {[ data, id, m ]};
trigger 〈 Application.TxUp, m 〉;
trigger 〈 CAN.TxDown, [ commit, id ] 〉;

upon event 〈 ComCan.comCanTimer, [ data, id, m ] 〉 do
if {[ data, id, m ]} ∈ buffer then buffer := buffer \ {[ data, id, m ]};

CAN:
upon event 〈 CAN.TxDown, packet 〉 do

//send packet to the CAN controller
upon event controller confirms transmission of packet do

trigger 〈 ComCan.TxCnf, packet 〉;
upon event controller received message packet do

trigger 〈 ComCan.TxUp, packet 〉;

Figure 2: Algorithms for the three layers.

explicitly triggers events of those layers). As it will be clear in the subse-
quent section, the composition model supported by RT-Appia eliminates this
limitation.

3.2 The Composition Event-Graph

By looking at the algorithms of each layer, it is possible to manually construct
the event-graph of the protocol composition. The event graph captures a
causal of chain of event handlers execution, in response to some external
stimulus (typically, the data load imposed on the system). Each node of the
graph is identified by the name of the handler and the state carried by the
event being processed (namely the message being processed).

The complete event-graph for our example is depicted in Figure 3. The
graph can be constructed by capturing the sequence of events from the initial-
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ization of the system. It can be seen that, upon initialization (event E1), the
application triggers the transmission of a data message (E2). This transmis-
sion request will trigger a chain of events in the remaining layers, both in the
sending node and in remote nodes. We just describe in detail the first steps
of this chain, as the same procedure can be applied to derive the rest. The
transmission request triggered by the Application layer is processed by the
ComCan layer, which manipulates the message by adding a control header.
Then, the ComCan layer forwards the transmission request to the CAN layer
(E3). In turn, the CAN layer invokes the CAN controller to transmit the
message on the network. This will later trigger a local confirmation (E4)
and an indication (E5) at all nodes (we are describing a broadcast proto-
col). These two events, in turn, generate further events, as illustrated in the
remainder of the Figure. Note that in the event graph, events that carry
a data message are labelled with the type of message associated with the
event. For instance, for the purpose of timing analysis, events E10 and E13
are different events.

3.3 Using the Event-Graph to Perform the Timing
Analysis

In a previous paper [18], we have shown how the event graph can be used
to derive the WCRT of the protocol composition. For self-containment, and
before we explain how the event-graph can be automatically derived from the
code, we briefly highlight the main principles of the technique. The interested
reader can refer to [18] for further details.

The WCRT for each received event of the protocol is computed according
to a set of timing analysis equations developed by Tindell in [16]. In his work,
several schedulability analysis models are presented; we have chosen to use
the timing offset model as this is the one that better allows us to capture the
chain of events mechanism. This method defines a transaction as a set of
tasks that execute with given offsets in relation to its initial time. We use this
to offset the various tasks that make up a micro-protocol in relation to the
user request event. The WCRT of an event is the time taken by the protocol
starting at the time of reception of the event that triggered the protocol
until it returns to an idle state. This time is composed of the local worst
case computation time (WCCT) and the WCRT of the lower level layers
(including lower levels computation time and message transmission through
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the communication channel).
The timing analysis of the communications protocols is performed in two

phases. In the first phase, the WCRT of the processing spent by the protocols
themselves is computed. In the second phase, the time spent during messages
transmission through the communications network must also be calculated.
However, the results of the second phase depend on, and affect, the results of
the first phase, requiring several iterations before converging on a final value.

4 Deriving the Event-Graph Automatically

from Code

We now explain how the RT-Appia framework allows the programmer to
code the protocol stack in such a way that both a running implementation
and the event graph can be derived from the same source. In order to do
so, we introduce the relevant RT-Appia mechanisms. Later in the text, we
make a brief overview of the remaining functionalities of RT-Appia which are
not directly related with the capture of the event-graph but are nevertheless
worthwhile mentioning to provide a clearer view of the overall framework.
RT-Appia has been implemented in Visual C++ and the resulting prototype
runs both on the WindowsNT operating system and on the ETS kernel1.

4.1 Channels, Layers and Sessions

We start by introducing the composition mechanisms of RT-Appia. Many
of these mechanisms are inherited from the Appia system [14], a protocol
composition framework developed in Java, without support for real-time op-
eration, upon which RT-Appia was based.

In RT-Appia each stack is composed of one or more channels. Each
real-time channel is an ordered sequence of sessions, instances of a specific
protocol layer. The session maintains state that is used by the layer to process
events. A layer that implements an ordering protocol may keep a sequence
number as part of the session state. In connection oriented protocols, the
session also keeps information about the endpoints of the connection. The
sequence of layers associated with a given channel defines a configuration im-
plemented by the channel. An important aspect of an RT-Appia stack is that

1ETS is a proprietary kernel of Phar Lap Software, Inc.
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Figure 4: Configuration, layers and sessions.

different channels may share sessions at one or more layers. This mechanism
supports the implementation of inter-channel coordination policies. The re-
lation among configurations, layers and session in RT-Appia is illustrated in
Figure 4.

Communication between sessions is made by the exchange of events.
Events are object oriented data structures, all descendant of a base class
named RTEvent. New events can be created by deriving from a previously
defined event class. In order to allow future event refinement, event type
tests are always performed on the weakest class satisfying the desired req-
uisites. The goal is to support event specialization using inheritance. This
way, legacy protocols, unaware of the new event attributes, will continue to
execute correctly. An advantage of RT-Appia is the use of an open event
model that allows the protocol designer to define the more appropriate set of
events to a target application area. Thus it provides an excellent framework
to develop specialized and efficient protocol stacks to be used in real-time
applications.
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Listing 1: Methods accepts and provides.

class RTLayer {
public:

// ....
void accepts (RTEventClass ∗event class, Direction dir ,

RTHandler handler, Duration wcct);
void provides (RTEventClass ∗event class, Direction dir );
// ....
};

4.2 Events Accepted and Provided

In order to derive the event graph for a protocol composition, one need first to
identify which events are processed and generated by each layer. Therefore,
RT-Appia requires the programmer of a layer to specify the set of events
accepted by the layer, and the set of events produced by the layer. For
that purpose, the programmer must invoke the accepts and provides methods,
whose signature is depicted in Listing 1. These methods must be invoked
in the constructor of the object that represents the protocol layer in the
RT-Appia runtime support (this object is a singleton).

The parameters for the accepts method are as follows. The first parameter
is the class of the event being accepted. The RT-Appia framework requires
the declaration of events to follow a methodology that offers the required
reflexive information to support both the capture of event-graphs but also
the scheduling of events at runtime. Therefore, each class of events has a
singleton object that represents that class [6]. The second parameter is the
direction in which the event flows in the stack. The third parameter, is
a pointer to the session method that will process the event. Finally, the
last parameter is the worst case computation time of the handler, which,
in the current version of the framework, must be explicitly declared by the
programmer. The provides method only accepts the class of the event and its
direction.

Listing 2 shows the declaration of accepted and provided events for our
case study (for the Application and ComCan layers). There are a number of
important points that are worth to emphasize. The reader will notice that
the same event, of class dataTxEventClass flows in the stack in both directions.
Such an event is produced by the Application in the down direction. The
event is then processed by the ComCan layer and forwarded to the CAN
layer. When the event is received from the network, it preserves its class but
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Listing 2: Accepted and provided events.

ApplicationLayer:: ApplicationLayer ()
{

accepts (dataTxEventClass, UP,
&ApplicationSession::handleDataTxUp, WCCT);

accepts (initEventClass , UP,
&ApplicationSession::handleInit , WCCT);

provides (dataTxEventClass, DOWN);
// ...
}

ComCanLayer::ComCanLayer ()
{

accepts (dataTxEventClass, DOWN,
&ComCanSession::handleDataTxDown, WCCT);

accepts (dataTxEventClass, UP,
&ComCanSession::handleDataTxUp, WCCT);

accepts (commitEventClass, UP,
&ComCanSession::handleCommitUp, WCCT);

accepts (dataCnfEventClass, UP,
&ComCanSession::handleDataCnfUp, WCCT);

accepts (comCanTimerEventClass, DOWN,
&ComCanSession::handleTimer, WCCT);

provides (dataTxEventClass, DOWN);
provides (commitEventClass, DOWN);
provides (dataTxEventClass, UP);
provides (comCanTimerEventClass, DOWN);
// ...
}

is now propagated in the upwards direction: it is first processed by the CAN
layer, forwarded by the ComCan layer and consumed by the Application.
Using this pattern, the programmer of each layer does not need to be aware
of exactly which adjacent layers will be used in the final protocol composition.
This make easy to add or remove layers to adapt the protocol stack to specific
requirements.

On the other hand, using the information maintained in the RTChannel,
the runtime can check exactly which sessions accept each event. With this
information, RT-Appia constructs an event route, an ordered sequence of
sessions that process an event. The event route is used at runtime to avoid
delivering an event to layers that are not interested in processing that event.
Therefore, the information captured using the accepts and provides methods
is useful, not only for the timing analysis, but also to support an efficient
execution of the protocol composition.
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We would also like to highlight how the composition model of RT-Appia
allows to express the fact that the ComCan protocol processes two different
types of messages: data messages and commit messages. This is achieved
by deriving a specialization name CommitEvent from the DataTxEvent. Using
this technique, we can distinguish both events at the level of the ComCan
layer (associating different handlers to each event) without changing a single
line of code at the level of the CAN layer (which processes both messages
in the same way, by handling just the base class). This feature, supports
the reuse of protocol implementations in different contexts, an important
property of protocol composition frameworks.

4.3 Event Triggers

The knowledge of the set of accepted and provided events is not enough
to construct the event graph. In fact, we also need to capture the causal
relation between accepted events and provided events. In order to make this
relation explicit, RT-Appia requires the programmer to declare triggers. A
trigger indicates that a given provided event is generated in response to an
associated accepted event. The signature of the available triggers is presented
in Listing 3.

There are two types of triggers: local triggers and network triggers. Local
triggers capture the communication between sessions in a protocol stack in
a single node. Network triggers capture the communication among different
nodes using a given network. The parameters for both triggers are the same,
with a few exceptions described later.

The first parameter, source, is a set of nodes where the trigger takes effect.
Most triggers take effect at all nodes (a reserved value, ALLNODES, is used
for this purpose). However, this parameter offers the opportunity to specify
that some triggers may only be active at given nodes. As we will see later
with our example, this feature is particularly useful to model the load of the
system (since not every node may be allowed to transmit messages).

The next four parameters are the class and direction of an accepted event
and the class and direction of the provided event, respectively. This infor-
mation is the key element of a trigger, as it allows to associate an accepted
event with a provided event. The FORWARD keyword is used to specify that
the event provided is the same as the event accepted. In this case, the class
of the event is preserved.
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Listing 3: Trigger methods

const RTEventClass ∗FORWARD = NULL;
const NodeSet ∗ALLNODES = NULL;
const int PERIODIC = ˜0;
enum TriggerSemantics { Default, OnFirst, OnLast }
enum TriggerLocation { Local, Remote }
enum IdOperation { NewId, SameId, AddSubId, RemoveSubId }
enum SizeOperation { NewSz, FromTrigerId, FromProvidedId }

class RTLayer {
public:

// ....
localTrigger (NodeSet ∗source,

RTEventClass ∗accepted, Direction acc dir,
RTEventClass ∗provided, Direction prov dir,
IdOperation idop, int id desc ,
SizeOperation size op , int size ,
TriggerSemantics semantics,
Duration period, int max activations);

networkTrigger (NodeSet ∗source,
RTEventClass ∗accepted, Direction acc dir,
RTEventClass ∗provided, Direction prov dir,
IdOperation idop, int id desc ,
SizeOperation size op , int size ,
TriggerSemantics semantics,
NetworkModel ∗network, TriggerLocation loc);

};
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The remaining set of parameters are less obvious, but extremely impor-
tant to preserve the modularity of the system.

The IdOperation is used to distinguish distinct triggers of the same handler
in the context of a single chain of events. Consider the case of the ComCan
layer in our example. This layer, in response to a transmission request, acti-
vates twice the data transmission handler of the underlying CAN layer: the
first time to transmit the data message, and a second time to transmit the
corresponding commit message. These invocations must be distinguished in
the event graph. The IdOperation parameter addresses this problem. When a
trigger is activated it is possible to:

• Create a new instance root identifier (NewId). A root identifier is a 4-
tuple that consists of: the node identifier, the layer where the identifier
was generated, the class of the triggered event and, finally, a numerical
id provided by the programmer (id desc parameter).

• Preserve the identifier of the accepted event (SameID). This is the most
common behavior of an handler that forwards an event after some pro-
cessing.

• Add a sub-identifier to the identifier of the accepted event (AddSubId).
This is used by a layer that generates more than one event in response
to a single accepted event (for instance, our ComCan layer or a layer
that fragments a message). The programmer specifies a numerical
value (id desc parameter) that distinguishes each sub-identifier. Sub-
identifiers are stacked on top of the root identifier.

• Remove a sub-identifier (RemoveSubId). This operation is the counter-
part of the AddSubId operation. A layer that has previously added a
sub-identifier to an event may extract the original identifier. This is
useful, for instance, to model the reassembly of an original message
from multiple fragments.

The SizeOperation parameter allows the programmer to specify the size of
the messages created by the layer. This information is important to have a
fine grain timing analysis of the protocol composition, as the message size has
an impact on the network transmission. The programmer may specify three
different operations: to declare the absolute size of a new message (NewSz), to
increase the size of a incoming message (this operation, FromTriggerId, models
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the addition of headers to messages), to recover the size associated with some
message identifier (this operation, ProvidedId, models the operations such as
the reassembly of messages).

The TriggerSemantics parameter captures the fact that, in many protocols,
triggers may fire only once for a given message, even if the accepted event
is accepted more than once. Consider for instance a layer that retransmits
a message but discard duplicates at the reception. Even if a message is
received more than once, only one copy is forwarded to the application. In
a similar manner, a layer that reassembles a message, may receive several
fragments and only delivers a single message upwards, when all fragments
have been received. The three semantics currently supported by RT-Appia
model these different cases. The Default semantics, activates the trigger every
time the accepted event is received. The OnFirst semantics, for the same
message identifier, discard all duplicate activations of the trigger. The OnLast

semantics, for a given message identifier, only considers the last activation
(triggers with on last semantics are only evaluated when no more triggers
with Default or OnFirst semantics can be activated).

The final parameters distinguish local triggers from network triggers. In a
local trigger the programmer may specify a period and a maximum number of
activations. This information is used to model timers and periodic workloads
in the timing analysis. In the network trigger, the programmer specifies
a network model object. A network model is a component that captures
the timing properties of the real-time network in use. In our prototype, a
model of the CAN bus network has been implemented. In a network trigger,
one also specifies if the event target is the local endpoint of a channel (for
instance, a transmission confirmation) or the remote endpoint(s) (typically,
data indications).

Listings 4, 5, and 6 present all triggers defined for our case study. These
listings illustrate how the different parameters of the triggers can be used.

The trigger for the application layer, in Listing 4, illustrates how a new
message is created. In this case, the message is sent in response to the init

event (this event is automatically generated by the RT-Appia runtime). Note
that the message is only sent by Node1, that a new identifier is created, and
that the size of the message is specified in the event trigger. Note also that
a periodic workload could be captured by specifying a period for this trigger
(we opted to omit this behavior in the example to simplify the graphs).

The triggers for the ComCan layer, partially depicted in Listing 5, show
how commit messages can be matched with the associated data messages
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Listing 4: Application layer triggers

NodeSet∗ data sources = new NodeSet (Node1);

ApplicationLayer:: ApplicationLayer ()
{

// ...
// start transmission after init event
localTrigger (data sources , // on node 1

initEventClass , UP, // trigger event
dataTxEventClass, DOWN, // created event
NewId, 1, // with new identifier
NewSz, PAYLOAD SZ, // with new size
Default , // default semantics
0, 0); // not periodic

}

Listing 5: ComCan layer triggers (partial)

ComCanLayer::ComCanLayer ()
{

// ...
// send commit message
localTrigger (

ALLNODES, // trigger at every node
dataCnfEventClass, UP, // trigger event
commitEventClass, DOWN, // created event
AddSubId, 2, // same identifier as tx confirmation
NewSz, CommitMessageSize, // commit message has fixed size
OnFirst, // sends the commit only once
0, 0); // not periodic

// forward data message to the application when commit is received
localTrigger (

ALLNODES, // trigger at every node
commitEventClass, UP, // trigger event
DataTxEventClass, UP, // created event
RemoveSubId, 0, // same identifier as tx request
FromProvidedId, 0, // size of original data message
OnFirst, // discards duplicates
0, 0); // not periodic

// retransmit the commit message
localTrigger (

ALLNODES, // trigger at every node
commitEventClass, UP, // trigger event
commitEventClass, DOWN, // created event
SameId, 0, // same identifier as confirmation request
NewSz, CommitMessageSize, // commit message has fixed size
OnFirst, // sends the commit only once
0, 0); // not periodic

}
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Listing 6: CAN layer triggers

CANLayer:: CANLayer ()
{

// ...
// deliver the message to the local node (loopback)
networkTrigger (

ALLNODES, // trigger at every node
dataTxEventClass, DOWN, // trigger event
FORWARD, UP, // created event
SameId, 0, // same identifier as request
FromTriggerId, 0, // not relevant
Default , // default semantics
canModel, Local); // uses the CAN network model to derive offsets

// deliver the message to the remote nodes
networkTrigger (

ALLNODES, // trigger at every node
dataTxEventClass, DOWN, // trigger event
FORWARD, UP, // created event
SameId, 0, // same identifier as request
FromTriggerId, 0, // same size as request
Default , // default semantics
canModel, Remote); // uses the CAN network model to derive offsets

// confirm the transmission of the data message
networkTrigger (

ALLNODES, // trigger at every node
dataTxEventClass, DOWN, // trigger event
dataCnfClass, UP, // created event
SameId, 0, // same identifir as data request
NewSz, 0, // not relevant
Default , // default semantics
canModel, Local); // uses the CAN network model to derive offsets

}

through the use of sub-identifiers. For instance, when a commit message
is sent, it inherits the identifier of the original data message, and a sub-
identifier is added to distinguish it from the original request. Later, when a
data indication (dataTxEventClass, UP) is generated in response to the recep-
tion of the commit message, the sub-identifier is removed and the original
size of the corresponding data message is recovered using the FromProvidedId

as the value for the SizeOperation parameter. The same example, illustrates
the use of the TriggerSemantics parameter. By selecting the OnFirst value, one
eliminates the duplicate generation of redundant commit events and data
indications.

Finally, the triggers for the CAN layer illustrate the use of the network-

Trigger. The canModel object is used by the timing analysis tool to derive the
offsets of the local confirmation and remote indication(s), in response to a
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Node: Node1

Target Layer: Application
Source Layer: kernel

Channel: mychannel

Class: init

Message ID: none
Direction: UP

Channel: mychannel
Node: Node1

Target Layer: ComCan
Source Layer: Application

Message Size: PAYLOAD_SZ
Message ID: (Node1, dataTx, Application, 1)
Direction: DOWN
Class: dataTx

Channel: mychannel
Node: Node1

Target Layer: CAN
Source Layer: ComCan

Direction: DOWN
Class: dataTx

Message ID: (Node1, dataTx, Application, 1)
Message Size: PAYLOAD_SZ + HeaderSizeMessage Size: 0

WCCT: APP_INIT_WCCT WCCT: COmCAN_DATATXDOWN:WCCT WCCT: CAN_DATATXDOWN_WCCT

Figure 5: Event descriptor graph (first 3 nodes).

data transmission request to the CAN network.
Triggers were introduced in RT-Appia to derive the event graph in an

automated manner. However, they are also used to support the debugging
and validation of the protocol execution. In fact, it is possible to configure the
implementation such that the generation of events at runtime is confronted
with the specification of triggers. If an handler provides an event not captured
by the trigger information, a runtime exception is generated.

4.4 From Triggers to the Event Graph

The event graph is constructed in a iterative manner, by generating the init

event at all nodes and checking for triggers. If a trigger is fired, new events are
added to the graph and triggers are checked for these events. This procedure
is iterated until no new events are created.

Each node of the graph is an event descriptor. The descriptor contains
the following information: The channel in which the event is generated; the
node in which the event is triggered; the layer that has triggered the event
(source); the layer that will accept the event (target); the event class, the
event direction; the identifier of the message associated with the event, if
any; the size of the message associated with the event if any; and the WCCT
of the associated handler.

Figure 5 illustrates the first three nodes of the event graph, rooted at
the init event triggered at Node1 as extracted from the triggers coded in the
layers. The reader may check that a complete event graph, equivalent to the
one we have derived manually and depicted in Figure 3 can be derived in an
automatic manner using this procedure.
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5 Discussion

The version of RT-Appia described in this paper is implemented in Visual
C++. The prototype runs both on the WindowsNT operating system and on
the ETS kernel. The current version can be executed on embedded systems
with a 32-bit x86 compatible processors.

One of the most challenging aspects of the RT-Appia design was the
definition of the trigger mechanisms, in order to automate the extraction of
the event graph. We aimed at achieving the following goals:

• Preserve modularity, in the sense that, when a layer is specified, the pro-
grammer should not be aware of configuration parameters such as: the
layers that will be executed above and below, the size of the messages
being exchanged, the exact subclasses of the events accepted (he/she
should only be aware of its base class), etc.

• Support a wide range of protocols, including protocols that fragment
and reassemble messages, protocols that generate control messages as-
sociated with data messages (such as acknowledgements or commit
messages, as illustrated by the ComCan algorithm), protocols that re-
transmit messages a maximum number of times (bounded loops), pro-
tocols that eliminate duplicates, etc.

We believe that these goals have been meet. It should be noted however
that the expressive power of trigger declarations is limited and cannot capture
the behavior of all protocols. For instance, multi-participant protocols with
a rotating coordinator, where the decision of which node reacts to a given
broadcast message depends on the session state, cannot be expressed with our
trigger mechanisms. However, to extract the model from the actual code in an
automated manner is a very hard task. Furthermore, it should be noted that
our goal is not to perform full protocol validation, but only to capture worst-
case execution patterns. This broadens the applicability of our tool, despite
its theoretical limitations (in most cases, the lack of detail only introduces
an acceptable level of pessimism in the analysis). Therefore, we believe that
RT-Appia provides a valid pragmatic tradeoff between complexity and power.

One concern regarding our approach is that the programmer is required
to perform an additional task (to specify the triggers) in order to allow the
event graph to be extracted. However, it is important to stress that most of
state-of-the-art tools for automatically validating protocol properties, such as
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Kronos [19] and UPPAAL [2], require a model of the program to be extracted
manually. In fact, tools to derive the model automatically from code are a
topic of active research [3, 5, 11]. Therefore, RT-Appia imposes a burden on
the programmer that is comparable to other existing approaches.

At first sight, it may seem that the specification of the triggers is almost
as hard as the extraction of the complete event graph (as the construction
of the graph from the triggers is somehow trivial). However, we need to
reiterate that the specification of triggers is local to a layer, i.e., when the
programmer specifies the triggers she does not need to be aware of the other
layers in the stack. One of the challenges of the work described here was to
design a trigger interface able to support such locality. The fact that such
interface was feasible was not obvious when we started this work. Our work
shows that it is possible to achieve this goal: For instance, in our example,
the triggers for the CAN layer are specified for data messages only; this does
not prevent upper layers from defining new subclasses, such as the commit
message (and the framework is able to support the exchange and keep track
of those new messages).

Finally, we discuss how RT-Appia helps to keep the information captured
by the triggers synchronized with the actual code of the event handlers. As
we have noted before, one advantages of the RT-Appia approach is that the
trigger information is also used at runtime. In particular, RT-Appia auto-
matically builds a set of control data-structures that can be used at runtime
to check the conformity of the execution with the information captured by
the triggers. For performance reasons, these runtime checks are optional but,
when activated, generate exceptions whenever a mismatch is detected (for in-
stance, if a handler generates an event not listed in any trigger). Therefore,
RT-Appia offers a much tighter integration among the model and the im-
plementation, specially if compared with tools where the model is described
in a language different from the programming language (such as Kronos and
UPPAAL).

6 Conclusions

In this paper we have described a system that simplifies the task of perform-
ing the timing analysis of real-time protocol compositions by extracting the
event graph automatically from the protocol implementation. This approach
has the advantage of requiring only a compiler for the language used in the
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implementation (in the current prototype, C++). More sophisticated tools,
such as the ones based on code analysis, may be much harder to develop and
maintain. Furthermore, the programmer is not required to annotate the code
with any kind of pre-compilation directives or comments. Therefore, our tool
is not only simpler to use, but also efficient in coding effort. Finally, the in-
formation provided to support the extraction of the event graph is used by
the implementation to optimize the execution of the protocol composition,
and to perform a number of runtime checks that validate the correspondence
between the computed event-graph and the actual flow of the running im-
plementation.
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