
Fault Isolation in SDN Networks

João Sales Henriques Miranda
joaoshmiranda@tecnico.ulisboa.pt

Instituto Superior Técnico
(Advisor: Professor Lúıs Rodrigues)

Abstract. Software Defined Networking (SDN) is a novel paradigm for
managing the computer networks. By supporting a logically centralized
point of control, it has the potential for simplifying network management.
For instance, it makes easier to use tools that analyse SDN configura-
tions and automatically validate that these configurations can preserve
target invariants on the data plane. However, such tools cannot cope
with unpredictable hardware and software faults that occur in run-time.
Thus, tools that help to localize faults in SDN networks are still required.
This work makes a survey of the state of the art in debugging tools for
SDN networks and proposes a research plan that aims at improving those
tools.

1 Introduction

Software Defined Networking (SDN) [1] is a novel paradigm for managing
computer networks. It provides a clear separation between the data plane (in
charge of forwarding packets among devices) and the control plane (which de-
fines how packets should be forwarded). Furthermore, it defines an architecture
that allows the control functions on each device to be configured by a logi-
cally centralized controller. The availability of a single central point of control,
that holds a specification of the control-plane configuration, has the potential to
strongly simplify network management [2–4].

Because of the simple ways to add or change network functionalities intro-
duced by SDN, controlling networks using software also makes it easy to in-
troduce new bugs. On the other hand, SDN also has potential to simplify the
testing, verification and debugging tasks. There are two main sources of errors in
an SDN network. One consists of faulty SDN configurations, that may generate
routing loops or black holes when deployed. A significant amount of research
has been performed in recent years in tools that aim at detecting and helping in
correcting this type of faults. Tools such as NICE[5] or VeriFlow[6] can analyse
an SDN program by manipulating models of network configurations, producing
possible configurations and verifying that a number of target invariants are not
violated under these configurations. The other source of errors are faults in the
software that runs on the networking devices or in the hardware itself. These
faults are typically unpredictable and occur at run-time. To help network man-
agers to detect and to correct these faults, tools such as OFRewind[7] or ndb[8]

1



typically resort to instrumentation, logging of events, and replay mechanisms.
Unfortunately, as it will be clear later in the text, fault localization may be
difficult even with these tools.

In this report we make a survey of the most relevant tools that have been
designed to support the validation and debug of SDN networks. Based on the
advantages and disadvantages of these systems, we propose the construction of
a tool that combines features of verification tools and debugging tools, with the
aim of simplifying the task of finding the root cause for a network misbehaviour.
This would be achieved by producing a differential analysis between the expected
paths to be taken by packets in a correct network and the observed paths in a
faulty network.

The rest of the report is organized as follows. Section 2 briefly summarizes
the goals and expected results of our work. In Section 3 we present all the
background related with our work. Section 4 describes the proposed architecture
to be implemented and Section 5 describes how we plan to evaluate our results.
Finally, Section 6 presents the schedule of future work and Section 7 concludes
the report.

2 Goals

The Software Defined Networking (SDN) paradigm has several advantages,
including the potential for simplifying network management. Part of these ben-
efits result from having a single point of control, which simplifies the task of
validating the correctness of the network configuration. Still, transient or per-
manent faults at the hardware level can cause networks to fail, and tools are
needed to help system managers to find the root cause for the observed errors.
In particular, transient faults may create unforeseen misconfigurations that may
be hard to pinpoint. With this goal in mind, several tools have been developed
to log and replay both data and control traffic in SDN networks.

Goals: Our work aims at helping system managers to find the root
cause for errors that may result from misconfigurations in SDN networks
caused by transient faults. For this purpose we plan to combine tools
that are able to automatically infer the traffic flows that are expected
to result from a concrete SDN configuration and compare them with the
flows observed in production. We expect that the differential analysis
between the expected and observed flows can help in pinpointing which
component is faulty or misconfigured.

Our approach to achieve this goal leverages on recent tools for the manage-
ment and debugging of SDN networks. Some of these tools are able to compute
offline the expected path of any packet in a given network configuration, and
other tools are able to record the paths followed by packets in production. We
aim to detect the point of divergence between these two paths. In the presence
of faulty or misconfigured components, our tool should be able to identify the
root cause for the network misbehaviour.

2



The project will produce the following expected results.

Expected results: The work will produce i) a specification of the algo-
rithms to compute the expected path of a packet in a given configuration,
to record the actual path, and to compare these two paths in order to
find a point of divergence; ii) an implementation of a prototype of the
system, and iii) an experimental evaluation resorting to the injection of
permanent and transient faults in network components.

3 Related Work

Our approach to achieve the goals presented in section 2 is based on ideas
presented in previous work in the areas of testing, verification, and debugging
of SDN networks. Testing and verification approaches try to validate programs
in respect to previously specified target invariants. Debugging approaches are
tailored to solve problems as they appear.

The remaining of the section is organized as follows. Section 3.1 introduces
the concept of Software Defined Networking (SDN). Section 3.2 presents Open-
Flow which is one of the existing APIs to manage switches in SDN. Section 3.3
introduces the concepts of testing, verification, debugging and emulation in the
context of SDN. Section 3.4 identifies common errors in SDN. Section 3.5 presents
the testing and verification approaches to find such errors. Section 3.6 presents
debugging approaches. Section 3.7 presents the emulation approach. Finally, sec-
tion 3.8 compares the previously presented solutions.

3.1 Software Defined Networking

Traditional networks are based on specialized components bundled together
in the networking devices. Examples of these devices are routers, switches, fire-
walls or Intrusion Detection Systems (IDS). Each of these devices has a specific
role and requires individual configuration (that is vendor specific). A network can
have multiple devices that, despite being configured independently, are expected
to cooperate to achieve a common goal. To ensure a consistent configuration
across all devices in a traditional network can be extremely challenging[2].

Furthermore, traditional network protocols, in particular routing protocols,
have been designed to be highly decentralized and to be able to operate without
a unique point of failure. This decentralization has advantages but also makes
hard to reason about the behavior of the system in face of dynamic changes to
the workload, re-configurations, faults, and assynchrony. Finally, traditional net-
working components are vertically integrated, i.e., they combine data forwarding
functions with control functions in a way that makes hard to analyse each of
this aspects in isolation. In addition to the complexity refered above, this ver-
tical integration leads to high upgrade cost (because updating software implies
buying new and expensive hardware) and very slow pace of innovation due to
larger hardware development cycles (when compared to software development
cycles)[2, 3].

3



A key step to solve the complexity problem identified above is to break the
vertical integration. This can be achieved by splitting the network functionality
in two main planes: the control plane and the data plane. The control plane is
responsible for deciding how traffic should be handled, in other words, it is in
charge of populating the devices’ forwarding tables. The data plane is responsible
for forwarding the traffic according to the rules installed by the control plane.

Software Defined Networking (SDN) is an emerging paradigm that makes
this separation possible. Given the strong potential of SDN to simplify network
management, the paradigm has gain significant support and adoption from many
large companies such as Google, AT&T and Yahoo[3]. In an SDN network, the
network devices can be simplified, becoming simple packet forward elements with
a common open interface to upper layers (e.g. OpenFlow), and all the control
logic is pulled to a logically centralized point of the network. Software Defined
Networking is defined by three main abstractions[4]: the forwarding abstraction,
the distribution abstraction, and the configuration abstraction. To illustrate these
abstractions and the SDN planes we use Figure 1 that is extracted from [9].
The interfaces used and offered by the control plane are refered, respectively, as
southbound API and northbound API.

Fig. 1. SDN architecture and its fundamental abstractions (picture taken from [9])

4



– The goal of the forwarding abstraction is to hide vendor specific details of
each individual equipment from the upper abstractions of the SDN architec-
ture. This can be achieved by having all devices exporting a common and
open API (a southbound API) to be used by the upper layer, the Network
Operating System. OpenFlow is a typical example of this API.

– The goal of the distribution abstraction is to hide from the upper layer the
number and locations of SDN controllers, giving the illusion that a logically
centralized controller is in charge of implementing the control plane. The
choice of whether or not make it distributed through multiple controllers
(and how to distribute it) in order to meet specific requirements (e.g. scal-
ability or fault tolerance) is up to the programmer instead of an inherent
characteristic of a network.

– Finally, the goal of the configuration abstraction (also refered as specifica-
tion abstraction, or network abstraction in the figure) is to simplify network
configuration by converting the global network view that is managed by the
controller into an abstract model. By doing so, the control program should
be able to specify its desired behaviour in an abstract network topology.

3.2 OpenFlow

OpenFlow is one of the most used soutbound APIs (see Figure 1). As stated
in [10], when the OpenFlow idea was developed, the main goal was to allow
researchers to experiment new ideas for network protocols in existing network
equipment (typically from diferent vendors) by providing a standardized inter-
face to manipulate the devices’ forwarding tables. Vendors could provide this
interface without exposing the internal working of their devices. This fact is rel-
evant because vendors would not easily open their algorithms and protocols since
just by opening them they would lower the barrier to entry for new competitors,
for example.

Not only the goal previously described was achieved, and SDN has emerged
as a very useful research aid, but it is also emerging in production networks
aswell, as stated in the previous section.

An OpenFlow network is composed by OpenFlow switches. These switches
implement a flow table, a secure channel connecting the switch to a controller
and the OpenFlow protocol, that allows to send events to the controller and to
receive packets or commands to manipulate the flow table. Figure 2 (taken from
[10]) represents this model of an OpenFlow switch. These switches may be either
dedicated OpenFlow switches or OpenFlow-enabled switches. We now describe
these two types of switch.

A Dedicated OpenFlow switch is a dumb device that has only data link layer
functionality implemented, i.e. it routes packets according to a flow table. Each
entry of this table is a pair (rule, action). If a packet matches the rule, the
respective action will be applied to it. The possible actions are described below.
The flow table is populated by means of commands sent to switches from a
remote controller, that implements the functionality of the above layers of the
network protocols stack. Communication between the controller and the switch

5



Fig. 2. Idealized OpenFlow switch (picture taken from [10])

is done by a secure channel, using the OpenFlow Protocol. The possible actions
in a dedicated OpenFlow switch are:

– drop the packet, e.g., for security reasons
– forward the packet to a given port
– encapsulate the packet and forward it to the controller. This is typically

used for the default action, when a packet does not match any rule and
corresponds to asking the controller where the packet should be sent to.

An OpenFlow-enabled switch is a regular switch that has extended functional-
ity to implement the behaviour of a dedicated OpenFlow switch, but maintaining
the upper layers of network protocols stacks (and thus being smarter devices).
These switches should provide the additional functionality without losing the
previous ones. This allows traffic from a production network to be routed using
standard and tested protocols, and research traffic to be routed with experi-
mental protocols. In order to achieve this, switches should have an additional
action:

– forward packet to the normal processing pipeline (layers above data link
layer in the network protocols stack).

The four actions that were briefly described here are detailed in the OpenFlow
switch specification [11], along with the OpenFlow protocol. We now describe
the most relevant types of messages of the protocol:

6



– packet in: sent from switches to the controller when a received packet that
does notmatch any rule;

– packet out : sent from the controller to switches when the controller has to
send a packet through the data plane;

– flow mod : sent from the controller to switches. Used to update a flow table
entry (add, modify or delete);

– port status: sent from switches to controller to inform about a port that was
added, modified or removed.

By using these messages, the controller can react to switch events by performing
changes in its own state and responding with commands that manipulate their
flow tables, or with individual packets that will be sent through the network.

3.3 Helper tools for SDN programs development

Prototyping, testing, verification, and debugging play important roles in soft-
ware development, and this is no different in the development of SDN programs.
These activities are so important and recurrent that there are multiple tools
available to automate parts of them. Examples of these tools will be described
in detail in sections 3.5 to 3.7. The remainder of this section will briefly introduce
each of these activities.

Testing is unavoidable, since there is no way to know if a system works as ex-
pected without testing it. Testing can target functional requirements or system
qualities (such as performance or availability). Despite being helpful, typically
testing cannot guarantee the absence of bugs (even if it is exhaustive). When
software testing is not enough, it is possible to apply verification, i.e. verify if the
implementation satisfies the specification. This requires that the specification is
formally written and it still does not guarantee correctness because the specifi-
cation cannot be validated automatically - there is always human intervention
in specification writing and validation. In other words, verification finds bugs
that fit in the first two of the categories of bugs enumerated in [12]. These two
categories are:

– The software does not do something that the product specification says it
should do;

– The software does something that the product specification says it should
not do.

Section 3.5 will present correctness testing of SDN control programs. It will
also present tools that perform verification of these programs, either in offline
mode or in online mode. Offline tools check target network invariants before
deployment, in a set of possible topologies, or in all admissible topologies. Online
tools perform this check in run time, before each forwarding rule is updated
(added, modified or deleted).

Testing/Verification and debugging are closely related since the former are
means to find software failures (also called bugs, defects, problems, errors, and
other terms) and the latter is the process of finding the cause(s) of these failures

7



in order to fix them. Debugging happens during development and during pro-
duction, since deploying software without bugs is, in most cases, an utopic goal,
specially when software starts growing in complexity. Section 3.6 will present
examples of tools that aid the debugging activity by recording, processing and
replaying traces of events and packet flows in an SDN network.

Prototypes are faster and cheaper ways to validate ideas than full imple-
mentation. To evaluate SDN program prototypes, it would be better in many
situations to use an emulated environment rather than a real network, because
it is faster to configure software in a single computer than setup hundreds of real
devices, and also because these devices might be running production software
that operators will probably not like to stop. Note that using emulated networks
is useful for evaluating prototypes of network applications but also prototypes of
testing tools, online verification tools and debugging tools. They are also useful
for performing the tests, verifications and debugging themselves, for the same
reasons mentioned above. Consider, for example, that a bug is reported in pro-
duction: if the network is still operational, debugging could be performed in a
separate (emulated) network without having to shutdown the production net-
work or use additional network devices. Section 3.7 will present an example of
such emulation tool.

3.4 Common errors in SDN networks

We list below the main errors that can affect the operation of SDN networks.
These errors can be caused by a combination of misconfigurations, software, and
hardware faults. While misconfigurations may potentially be avoided by using
offline validation tools, that check the correctness of the configurations before
thay are applied, sofware and hardware faults may occur in run-time and the
resulting errors require online techniques to be detected.

– Forwarding loops: are always undesirable because it means that packets
are travelling around and will not reach any destination. There are some
situations, though, that networks might tolerate loops during a state transi-
tion. Loops can be detected by verifying if a packet traverses a switch more
than one time.

– Black holes: are bugs that lead to packet loss because the packets do not
match any rule.

– Suboptimal routing: there are (almost) always multiple possible paths
to connect two devices. Even if packets are reaching their destination, they
might be incorrectly forwarded if they are routed through paths that take
more time than others.

– Access control violations: happen when a host can connect to another
host in a separate VLAN.

– Anomalous forwarding: these errors are characterized by the fact that
packets are not being correctly forwarded according to the specification.
This might occur, for example, because a forwarding rule is not correctly
installed.

8



3.5 Testing and Verification of Software Defined Networks

Ideally, one would like to deploy a network that would not present any fail-
ures in production. Unfortunately, this is an almost utopian goal to achieve in
practice, due to the enormous state space of SDN applications. In addition to
the state of the controller program, one has also to take into account the state
of the devices encompassed by the network, namely the switches and the end
hosts. As such, the state space of an SDN application can grow along three
dimensions: i) space of input packets (SDN applications must be able to han-
dle a large variety of possible packets), ii) space of switch and end hosts states
(e.g. switches have their own state that includes packet-matching rules, as well
as counters and timers), and iii) space of network event orderings (e.g. events
such as packet arrivals and topology changes that can occur in the network in a
non-deterministic fashion).

Despite these challenges, testing SDNs for errors is of paramount importance
to reduce the likelihood of failures after deployment. In fact, tests allow not
only to improve the reliability of the SDN, but also help developers to fix the
underlying bug in a more timely manner, by providing concrete traces of packets
that trigger errors.

Testing can refer to multiple properties such as correctness, performance,
availability or security. We now overview some tools that aim at testing SDN
control software for correctness. To this end, these tools rely on correctness
properties specified by the user, such as no black holes or no forwarding loops.

For each system presented below, we also discuss how it copes with the
aforementioned state explosion issue.

NICE [5] has the goal of finding errors in SDN applications via automatic
testing. As input, it receives a controller program, a network topology (with
switches and end hosts) and a specification of correctness properties for this
network.

NICE views the network (i.e. the devices and the controller program) as a
unique system, and applies model checking to systematically explore the possible
states of this system while checking correctness properties in each state. The state
of the network is modeled as the union of the individual states of its components.
In turn, the state of a component is represented by an assignment of values to a
given set of variables. Components change their state via transitions (e.g. send
or receive a message) and, at any given state, each component keeps a list of
its possible transitions. A system execution is, thus, a sequence of transitions
among component states.

For each state, NICE checks if is a given correctness property is violated.
If there is such violation, the tool can, at this point, output the sequence of
transitions that triggers the violation. Otherwise, if no such sequence is found,
the search ends without finding a bug and the system passes the test.

In terms of scalability issues, NICE addresses the state space of input pack-
ets by applying symbolic execution to identify relevant inputs in the controller
program. Symbolic execution allows executing a program with some variables

9



marked as symbolic, meaning that they can have any value. In a branching
point, the symbolic execution engine will assign these variables with values that
will allow the program to explore both branch outcomes and exercise multiple
code paths.

Since the controller program consists of a set of packet-arrival handlers, NICE
leverages symbolic execution to find equivalence classes of packets (i.e. sets of
packets that exercise the same code path in the controller program). In this way,
NICE can model check different network behaviors by simply adding a state
transition that injects a representative packet from each class in the network.

NICE copes with the state space of the switches and end hosts by using
simplified models for these components and the transitions between them. The
simplified models ignore unnecessary details of these devices, therefore reducing
their state space.

Finally, to efficiently search the space of network event orderings, NICE em-
ploys a number of domain-specific heuristics that favor the exploration of event
interleavings that are more likely to expose bugs. For instance, one of the heuris-
tics focuses on discovering race conditions by installing rules in switches with
unusual or unexpected delays. In turn, another heuristic imposes a bound on the
number of packets sent by end hosts, with the goal of reducing the search space
of possible transitions.

As a remark, to specify these correctness properties, the programmer can ei-
ther use NICE’s library of common correctness properties or write their custom
properties. NoForwardingLoops and NoBlackHoles are two examples of proper-
ties already offered by NICE.

VeriCon [13] verifies SDN programs at compile time, validating their correct-
ness not only for any admissible topology, but also for all possible (infinite)
sequences of network events. VeriCon has the advantage of providing the guar-
antee that a given SDN program is indeed free of errors. This contrasts to NICE
(and other finite state model-checking tools), which are able to identify bugs,
but not their absence. Furthermore, VeriCon scales better than NICE to large
networks because it encodes the network and the correctness conditions as first-
order logic formulas, which can be efficiently solved by theorem solvers.

VeriCon receives as input: an SDN program and first-order logic formulas
describing both the constraints on the network topology and the correctness
condition (expressed as network invariants). To help defining these formulas
and write easily-verifiable SDN programs, the authors of VeriCon designed a
simple imperative language called Core SDN (CSDN). CSDN programs operate
on a single kind of data structures – relations. Relations in CSDN represent the
state of the network, by modelling the network topology, switch flow tables and
the SDN program internal state. CSDN commands are then used to query and
manipulate relations (by adding or removing tuples from them) as a response to
events such as a packet arrival. Since updates to relations are expressible using
Boolean operations, CSDN programs ease significantly VeriCon’s verification
task.

10



VeriCon verifies correctness by validating if the invariants are preserved after
arbitrary events on switches and on the controller, on an arbitrary topology that
respects the topology constraints. In order for an invariant to hold, it must i) be
satisfied at the initial state of the network, and ii) be inductive, i.e. the invariant
must hold after an arbitrary sequence of events.

Writing inductive invariants is not straightforward because one has to spec-
ify the sets of states after an arbitrary sequence of events. However, VeriCon
provides an utility that uses iterated weakest preconditions to produce induc-
tive invariants from simpler invariants specified by the developer. This approach
works as follows. Given an invariant and an event handler, a new condition will
be added to the invariant. This condition is the weakest precondition that guar-
antees that the previous invariant is true after the execution of the event handler.
According to the authors, at least for simple SDN programs, this approach can
produce inductive invariants with few iterations.

Having the inductive invariants, VeriCon performs the verification by sending
the first-order logic formulas (the invariants, the constraints on the topology
and the CSDN program transformed in first-order logic formulas) to a theorem
prover. The solver will then either output a concrete example that violates the
invariants or confirm that the program is correct.

A drawback of VeriCon is that it only supports the verification of safety
invariants and assumes that rules are installed atomically, thus ignoring out-of-
order installation problems.

Both NICE and VeriCon are offline approaches, in the sense that they operate
prior to the deployment of the network. In the following, we present a solution
that follows a online approach, meaning that it verifies network invariants in
real-time, i.e. during the actual execution of the SDN application.

VeriFlow [6] analyses the data plane state of a live SDN network and checks for
invariant violations before every forwarding rule is inserted, updated, or deleted.
While previous tools that perform offline invariant checks would be closer to the
goal of not deploying buggy control software, the execution times of those tools
are at timescales of seconds to hours. Moreover, they cannot detect or prevent
bugs as they arise.

To perform online verification, VeriFlow intercepts the communications be-
tween the controller and network devices to monitor all network state update
events (i.e. events that insert, modify or delete rules). However, to cope with
the problem of state space explosion, VeriFlow confines the checks for invariant
violations solely to the subpart of the network where these events will produce
forwarding state changes.

VeriFlow computes equivalence classes (EC) of packets in order to find the
subparts of network that are affected by a given rule. Here, just like in NICE, an
EC corresponds to a set of packets that are equally forwarded across the network.
For each EC, VeriFlow generates a forwarding graph where each vertex represents
the EC in a given network device, and each edge represents the forwarding

11



decision taken by this device for packets belonging to that EC. Thus, this graph
gives us the expected flows in a physical network view (rather than in an abstract
view) as it is constructed directly from information retrieved from the data
plane through the OpenFlow API. After generating these graphs, VeriFlow will
run queries that will be used to verify network invariants after a rule update is
intercepted. If the invariants are not violated, the rule will be sent to the devices.
Otherwise, VeriFlow will perform a pre-defined action, such as blocking the rule
and firing an alarm or just fire the alarm without blocking the rule, in case the
invariant violation is not dramatically severe (e.g. packet loss might be tolerable
for a while, but ACL violations might not).

VeriFlow was designed to be transparent for OpenFlow devices. The authors
have implemented two prototypes: one that is a proxy between the controller and
the network, being controller independent. the second one is integrated with the
NOX OpenFlow controller [14] for performance improvement reasons.

The downside of online approaches with respect to offline approaches is that
they degrade the performance of the network. In particular, the results in [6]
show that VeriFlow incurs 15.5% performance overhead on average, which the
authors argue to be tolerable in practice.

3.6 Debugging SDN networks

Testing and verification tools for SDN applications have shown promising
results and are undoubtedly useful to improve the overall quality of these ap-
plications by reducing the likelihood of errors. However, all these tools rely on
models of the network behavior, hence cannot handle firmware and hardware
bugs. To address problems stemming from firmware and hardware bugs (as well
as bugs not uncovered during the testing/verification phase), SDN debugging
tools are still required.

Typical tools used to debug traditional networks include ping, traceroute,
tcpdump and SNMP statistics [15, 8]. Unfortunately, these tools are often not
enough to find the root cause of bugs, or provide little aid in this task, because
they are still very time consuming.

SDN facilitates the development of better tools for network debugging, since
the control software is logically centralized and hardware transparent. Further-
more, these centralized control programs have a global network view, and write
the network state changes directly into the switch forwarding tables using a
standard API. [8]

In this section, we overview some tools designed to help developers debug
errors in SDN networks.

NetSight [15] is an extensible platform designed to capture and reason on
packet histories. Packet histories can be extremely helpful to debugging because
one can ask questions such as where the packet was forwarded to and how it was
changed, instead of having to manually inspect forwarding rules. The authors
have implemented on top of it four network analysis tools for network diagonsis

12



showing NetSight’s usefulness. Among these tools, we are particularly interested
in ndb [8] which is an interactive debbuger for networks, with functionalities
similar to gdb.

NetSight offers an API to specify, receive, and act upon packet histories of
interest. The packet histories are obtained by means of a regular-expression-like
language, called Packet History Filters (PHFs). More concretely, PHFs consist
of regular expressions used to process and filter postcards. Postcards, in turn,
are records created whenever a packet passes by a switch.

Postcards contain the following information: the switch id, output ports, and
the version of switch forwarding state (i.e. a counter that is incremented every
time a flow modification message is received). NetSight generates postcards by
duplicating each packet that enters a switch and truncating the duplicated packet
to the minimum packet size. This packet, i.e. the postcard, is then forwarded
to a predetermined NetSight server, which are responsible for processing the
postcards and generate packet histories.

To monitor the behavior of the switches, NetSight uses a process called flow
table state recorder (or recorder, for short) placed in between the controller
and the switches. The recorder intercepts all flow modification rules sent to the
switches and stores them in a database. In addition, NetSight augments each rule
with instructions to create the corresponding postcard, namely the destination
of the NetSight server which the postcard should be forwarded to.

Naturally, recording postcards for every packet hop and processing them in
order to build packet histories imposes scalability challenges. To address these
challenges, NetSight uses one or more dedicated hosts to receive and process
postcards, employs aggressive packet header compression and relies on a carefully
optimized code.

The authors have implemented a prototype of NetSight and tested it on both
physical and emulated networks, with multiple unmodified OpenFlow controllers
and diverse topologies. According to the results reported in [15], NetSight scales
linearly with the number of servers.

OFRewind [7] is a debugging tool that allows the record and replay of pack-
ets in SDN networks. As stated before in this section, standard tools used for
network debugging are in many situations not enough to find the root cause of
a problem. The behavior of black-box components (switches with proprietary
code) cannot be understood by analytical means alone. In such situations, re-
peated experiments are needed. Therefore, it would be useful for developers to
replay the sequence of events that led to an observed problem. OFRewind was
designed to achieve this goal. The evaluation results shown in [7] show that
OFRewind can be enabled by default in production networks.

One of the key factors that allows OFRewind to be always on is the possibility
of partial recording: even though it is possible to record the full set of packets,
this is infeasible in an entire production network. Most of the times, it is enough
to record just a small subset of the traffic, such as just the control messages
or just the packet headers. The ability to replay different subsets of traffic,

13



multiple times, allows to reproduce the error and, throughout these repeated
replays, isolate the component or traffic causing the error.

SDN Troubleshooting System (STS) [16] aims at reducing the effort spent
on troubleshooting SDN control software, and distributed systems in general, by
automatically eliminating from buggy traces the events that are not related to
the bug. This curated trace, denoted Minimal Causal Sequence (MCS), contains
the smallest amount of inputs responsible for triggering the bug.

The minimization process consists of two tasks: i) searching through subse-
quences of the logged external events (e.g. link failures) and ii) deciding when
to inject external events for each subsequence so that, whenever possible, an
invariant violation is triggered again, during replay.

For the first task, STS applies delta debugging, which is an algorithm that
takes as input a sequence of events and iteratively selects subsequences of it.
STS also receive as an input the invariant that was violated by the execution
of this sequence of events. If a subsequence successfully triggers the invariant
violation, the other subsequences are ignored and the algorithm keeps refining
that one until it has found the MCS. Note that, using this approach, an MCS is
not necessarily globally minimal.

In order to keep the network state consistent with the events in the subse-
quence, STS treats failure events and its corresponding recovery events as pairs
and prunes them simultaneously. Also, STS updates the hosts’ initial positions
when pruning host migration events to avoid inconsistent host positioning.

For the second task (deciding when to inject external events), STS uses an
interposition layer that allows delaying event delivery to make sure that the
replayed sequence of events obeys to the original “happens-before” order.

STS has the advantage of creating an MCS without making assumptions
about the language or instrumentation of the software under test.

In terms of limitations, STS is not guaranteed to always find an MCS due
to partial visibility of internal events, as well as non-determinism (although
not finding is a hint for the type of bug). Also, performance overhead from
interposing on messages may prevent STS from minimizing bugs triggered by
high message rates. Similarly, STS’s design may prevent it from minimizing
extremely large traces. Finally, bugs outside the control software (for instance,
misbehaving routers or link failures) are considered to be out of the scope of this
system.

3.7 Emulation

Emulation plays an important role in SDN programs’ development. This is
also true for developing tools that aid in testing and debugging. An example
where emulation shows its importance in debugging is the ability to replay a
buggy trace in an emulated network, maintaining live the (partially) functioning
production network. The replay debugging process can be executed without
interfering with the production network. As for the tools development, or more

14



generically, the SDN programs’ development, emulation is important because it
might allow for faster prototyping iterations. Because configuring an emulated
environment is faster than configuring a physical one, especially when it has
multiple nodes.

MiniNet [17] was designed aiming to enable a prototyping workflow that
is flexible (adding new functionality and changing among network topologies
should be simple), deployable and realistic (there should be no need to change a
functional prototype that runs on an emulated network to run it on a physical
network), interactive (network shoud be managed and ran in an interactive man-
ner just like a physical network), scalable (it should allow to emulate networks
with thousands of nodes), and shareable (collaboration should be easy so that
other developers could use one’s experiments and modify them).

Previously available solutions are not affordable by most developers or not
realistic. A network of Virtual Machines (VMs) would meet almost all previ-
ously mentioned goals, but since virtualizing every switch and host uses sig-
nificant resources, this approach becomes too heavy (does not scale). MiniNet
emulates the whole network instead, sharing resources between virtualized nodes
to achieve a scalable solution. In MiniNet’s implementation, the network devices
and the topology they form can be managed through a command line interface
and python scripts. The software under test can be deployed on real networks
without modification and the network can be shared using a single VM images.

MiniNet has helped the development of many useful prototypes, as reported
in [17]. It has been also extended to improve aspects such as device isolation and
monitoring [18].

3.8 Summary

Table 1 summarizes the main characteristics of the systems presented in
sections 3.5 and 3.6, i.e. the testing, verification and debugging tools. All these
systems have the objective of finding errors in SDN programs. The presented
characteristics are the approach of the system, when the tool is ran1, its input
and its output/result.

4 Architecture

As discussed in the previous section, there are many alternatives to test and
verify correctness properties of SDN control programs. These solutions validate
a program by testing network invariants either in an offline mode, given a net-
work topology or constraints in the possible topologies, or in an online mode.
Unfortunately, these solutions cannot uncover all types of bugs, because they
make assumptions that the network devices behave as the control programs ex-
pect them to behave. To detect this type of problems, debugging tools must be

1 When talking about debugging tools, we use the designation of post-mortem to
denote that the tool is ran after an error has been detected, in contrast to tools
that try to find these errors offline, but before they happen in production.

15



System Approach When Input Output/Result

NICE Testing Offline
Program + network
topology + desired cor-
rectness properties

Sequence of events that
triggers a bug

VeriFlow Verification Online
Desired correctness
properties

Rule inser-
tion/update/deletion
is canceled or alarm is
issued

VeriCon Verification Offline

SDN program +
network topology
constraints + desired
correctness properties

Counter examples
(topologies that vio-
late invariants)

NetSight

Debugging
(recording
packet
histories)

Interactive
or offline
(post-
mortem)

Packet History Filters
(PHFs)

Packet histories of in-
terest

OFRewind
Debugging
(record and
replay)

Offline
(post-
mortem)

Record mode / Replay
mode

Buggy trace

STS
Debugging
(trace min-
imization)

Offline
(post-
mortem)

Correctness propertie
that was violated +
buggy trace

Minimized buggy trace
(Minimal Causal Se-
quence)

Table 1. Summary of the presented systems

used. Despite being helpful, debugging tools presented in previous section still
cannot isolate the root cause of a problem.

The problem addressed in this report is to design a system that isolates
the device where a network misbehaviour has its origin. Section 4.1 presents
an overview of the system’s architecture. Then Section 4.2 presents an example
of a fault in a network device which is hard to isolate with other tools and
which our tool should have no trouble in isolating. Finally, Section 4.3 indicates
some implementation details, namely the tools that we will adapt to build the
components presented in Section 4.1.

4.1 Overview

Figure 3 shows a simplified view of the main components of our planned
system. The system will have two main components: a recorder that computes
the actual paths followed by certain packets in a network, and a graph converter
that converts the forwarding graphs into expected paths, with a representation
similar to those computed by the recorder. Section 4.3 explains how these graphs
are obtained. The graph converter then feeds the expected paths into the recorder
so that it can compare the expected and the actual paths.

The operations performed by the system can be split between two phases,
that we describe as follows.

16



Fig. 3. Simplified view of the system that we plan to build

– flow modification phase: when the controller issues commands to modify the
switches’ flow tables, the paths taken by different sets of packets will most
likely change. At this time, the graph converter will retrieve the forwarding
graphs (according to the expected forwarding behaviour) and perform the
transformation to paths with representations compatible with those com-
puted by the recorder. It will then send these results to the recorder, attach-
ing the identifiers of these sets of packets to their respective expected paths.
The recorder will then use this information to record the paths taken only
by packets of interest, i.e. those whose forwarding behaviour has changed.
This is achieved by setting a packet filter (computed by the recorder);

– recording phase: during this phase, based on the filters previously set, the
recorder will receive the packet histories of interest, i.e. the ones that, in the
presence of a missing flow table update, might deviate from the expected
path. Computing these filters is therefore important to avoid comparing
paths of packets whose expected paths did not change (because forwarding
rules that were changed did not affect them). Upon receiving a packet history,
the recorder has to look for the respective expected path in order to be able to
perform the differential analysis and then identify the misbehaving devices,
if there are any.

4.2 Example

Figure 4 shows a sample topology created with MiniEdit, which is a GUI
to edit network configurations on MiniNet. We will use this topology to show
examples of expected and actual paths and how the comparison of both can help

17



us isolating the fault in a network. Consider that this topology is a configuration
that implements in one side high bandwidth paths for video streaming (paths
that traverse switch s2) and in the other side paths for regular traffic (paths that
traverse switch s4). Hosts h1-h4 are servers that can use either of these paths.
Clients are connected to switches s5 to s10 (omitted in the figure for simplicity).
c0 is the controller. If one (and only one) of the switches s2 or s4 stops working,
the traffic can still reach all the clients because of link redundancy. A problem
that might occur in this configuration is switch s1 failing to install a set of
forwarding rules due, for example, to ignoring an up link event issued after a
brief failure of switch s2. This would cause flows to be installed to the lower
bandwith path and, even when switch s2 is functional again, recent connections
from video stream applications would be routed through the regular traffic path
due to previous installed rules during s2’s failure. New connections would be
estabilished through the expected video stream path. Verification tools would
not be able to identify this problem because it was a transient fault (causing a
permanent error - an anomalous forwarding) and it does not even violate any
invariant. Debugging tools would not be able to reproduce the error unless they
have recorded the affected data packets. Even though, analyzing packet histories
manually is not practical, at least taking into account that these networks may
have hundreds or thousands of nodes. For this particular example, the expected
path for a packet sent from h1 to a client, c, connected to s5 would be {h1, s1, s2,
s5, c}. The actual path would be {h1, s1, s4, s5, c}. Comparing both sequences we
can identify that the misbehaving switch is s1, the point of divergence between
the two paths. We expect that this approach can aid debugging larger networks,
but the first test scenario is planned be similar to this example.

4.3 Selected tools

To compute the expected path, we will need a tool that analyses the data
plane of a network in order to produce an expected physical model of a network
at a given instant. We are considering to use VeriFlow for that reason. As it
is explained in Section 3.5, VeriFlow is a tool that performs online invariant
validations. It operates in the data plane and uses forwarding graphs to represent
network forwarding behaviour for a given Equivalence Class (EC) of packets. In
particular, VeriFlow provides two functions in its API that will be, we believe,
very useful for our approach:

– GetAffectedEquivalenceClasses: returns the ECs that are affected by a given
forwarding rule update

– GetForwardingGraph: returns the forwarding graph of a given EC

To compute the actual path we need to use a recording tool rather than
verification tools, because the latter assume that network devices behave as the
control programs expect them to behave. We also need that this tool records the
trace of a packet, i.e. the devices that the packet traversed. For this purpose we
are considering extending NetSight because it is designed specifically to compute

18



Fig. 4. Sample topology created with MiniEdit

the packet histories and it is optimized for that purpose. We are mainly interested
in these two functions of NetSight:

– add filter (and delete filter): allows to add (or delete) a filter of packets of
interest and a respective callback function that will be called with the re-
spective packet history

5 Evaluation

As described in the previous section, we plan to implement a tool that pin-
points the faulty device in presence of a network misbehaviour. To evaluate our
prototype, we plan to proceed as follows.

– Environment: we intend to use MiniNet’s network emulation capabilities,
using common network topologies and multiple buggy devices. Last para-
graph of last section describes a particular scenario that we plan to use to
test the first functional version of the prototype. In order to perform this
evaluation we need to modify MiniNet to be able to inject faults in network
devices.

– Metrics: we plan evaluate the system’s performance by quantifying the
parameters that influence the time that the tool takes to isolate a fault,
by measuring this time while varying the number of Equivalence Classes of
packets and the number of network devices, one at a time. Since the purpose

19



of this system is to isolate switch faults in order to aid in the debugging
activity, it makes sense to compare it with ndb (the debugger built on top
of NetSight) which is also appropriate to debug these kind of problems. To
perform this comparison we will need other metrics. Debugging time is hard
to evaluate in a fair manner, so we plan to use other metrics that are related
but are easier to obtain - the number of inputs that are necessary to give
and the number of switches that we must look at when analyzing a path
that is different from the expected one. We expect that our system will not
need any input and will identify a single switch (in cases where a single fault
is present), while ndb would need the manual specification of the packet
histories of interest, and the packets will typically traverse several switches.

6 Scheduling of Future Work

Future work is scheduled as follows:

– January 9 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

– March 30 - May 3: Perform the complete experimental evaluation of the
results.

– May 4 - May 23: Write a paper describing the project.
– May 24 - June 15: Finish the writing of the dissertation.
– June 15: Deliver the MSc dissertation.

7 Conclusions

Software Defined Networking (SDN) is an emerging networking paradigm
that facilitates network management but also introduces new sources of errors,
despite also creating opportunities to create better tools that help finding the
causes of these errors. In this work we have discussed the motivation for using
SDN, the main concepts of SDN architecture and common errors that affect SDN
networks. Then we presented examples of testing, verification and debugging
tools, as well as one emulation tool to illustrate the current state of the art
in these aspects. We have then presented a solution that combines techniques
of verification with techniques of debugging to isolate faults in SDN networks.
Finally, we present our plans to evaluate our solution and the schedule of future
work.

Acknowledgments We are grateful to N. Machado for the fruitful discussions
and comments during the preparation of this report.

References

1. Open Networking Foundation: Software-Defined Networking: The New Norm for
Networks. White paper, Open Networking Foundation, Palo Alto, CA, USA (April
2012)

20



2. McKeown, N.: How SDN will shape networking. Available at https://www.

youtube.com/watch?v=c9-K5O_qYgA (October 2011)

3. : Software defined networking (SDN): This changes everything! Available at https:
//www.youtube.com/watch?v=H_3Lk6XbWw0 (May 2014)

4. Shenker, S.: The future of networking, and the past of protocols. Available at
https://www.youtube.com/watch?v=YHeyuD89n1Y (October 2011)

5. Canini, M., Venzano, D., Pereš́ıni, P., Kostić, D., Rexford, J.: A nice way to
test openflow applications. In: Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation. NSDI’12, Berkeley, CA, USA,
USENIX Association (2012) 10–10

6. Khurshid, A., Zou, X., Zhou, W., Caesar, M., Godfrey, P.B.: Veriflow: Verifying
network-wide invariants in real time. In: Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 13), Lom-
bard, IL, USENIX (2013) 15–27

7. Wundsam, A., Levin, D., Seetharaman, S., Feldmann, A.: Ofrewind: Enabling
record and replay troubleshooting for networks. In: Proceedings of the 2011
USENIX Conference on USENIX Annual Technical Conference. USENIXATC’11,
Berkeley, CA, USA, USENIX Association (2011) 29–29

8. Handigol, N., Heller, B., Jeyakumar, V., Maziéres, D., McKeown, N.: Where is the
debugger for my software-defined network? In: Proceedings of the First Workshop
on Hot Topics in Software Defined Networks. HotSDN ’12, New York, NY, USA,
ACM (2012) 55–60

9. Kreutz, D., Ramos, F.M.V., Verissimo, P., Esteve Rothenberg, C., Azodolmolky,
S., Uhlig, S.: Software-Defined Networking: A Comprehensive Survey. ArXiv e-
prints (June 2014)

10. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., Shenker, S., Turner, J.: Openflow: Enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev. 38(2) (March 2008) 69–74

11. : The openflow switch specification. Available at http://OpenFlowSwitch.org

(February 2011)

12. Patton, R.: Software Testing (2Nd Edition). Sams, Indianapolis, IN, USA (2005)

13. Ball, T., Bjørner, N., Gember, A., Itzhaky, S., Karbyshev, A., Sagiv, M., Schapira,
M., Valadarsky, A.: Vericon: Towards verifying controller programs in software-
defined networks. SIGPLAN Not. 49(6) (June 2014) 282–293

14. Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., Shenker, S.:
Nox: Towards an operating system for networks. SIGCOMM Comput. Commun.
Rev. 38(3) (July 2008) 105–110

15. Handigol, N., Heller, B., Jeyakumar, V., Mazières, D., McKeown, N.: I know what
your packet did last hop: Using packet histories to troubleshoot networks. In:
Proceedings of the 11th USENIX Conference on Networked Systems Design and
Implementation. NSDI’14, Berkeley, CA, USA, USENIX Association (2014) 71–85

16. Scott, C., Wundsam, A., Raghavan, B., Panda, A., Or, A., Lai, J., Huang, E.,
Liu, Z., El-Hassany, A., Whitlock, S., Acharya, H., Zarifis, K., Shenker, S.: Trou-
bleshooting blackbox sdn control software with minimal causal sequences. SIG-
COMM Comput. Commun. Rev. 44(4) (August 2014) 395–406

17. Lantz, B., Heller, B., McKeown, N.: A network in a laptop: Rapid prototyping for
software-defined networks. In: Proceedings of the 9th ACM SIGCOMM Workshop
on Hot Topics in Networks. Hotnets-IX, New York, NY, USA, ACM (2010) 19:1–
19:6

21



18. Handigol, N., Heller, B., Jeyakumar, V., Lantz, B., McKeown, N.: Reproducible
network experiments using container-based emulation. In: Proceedings of the 8th
International Conference on Emerging Networking Experiments and Technologies.
CoNEXT ’12, New York, NY, USA, ACM (2012) 253–264

22


