
A REPLICA CONSISTENCY ALGORITHM FOR
GLOBDATA

João Travassos Cabral Martins

Dissertação submetida para obtenção do grau de

MESTRE EM INFORMÁTICA

Orientador:

Luís Eduardo Teixeira Rodrigues

Júri:

Rui Carlos Mendes de Oliveira

João Pedro Guerreiro Neto

Março de 2003

A REPLICA CONSISTENCY ALGORITHM FOR
GLOBDATA

João Travassos Cabral Martins

Dissertação submetida para obtenção do grau de

MESTRE EM INFORMÁTICA

pela

Faculdade de Ciências da Universidade de Lisboa

Departamento de Informática

Orientador:

Luís Eduardo Teixeira Rodrigues

Júri:

Rui Carlos Mendes de Oliveira

João Pedro Guerreiro Neto

Março de 2003

Abstract

This thesis addresses the problem of replica management in a distributed object-

oriented database system. It presents a protocol to ensure data consistency across

the different nodes of the system. This protocol relies on recent advances in group

communication techniques, and on the use of atomic broadcast as a building block

to help serialize conflicting transactions.

The protocol was implemented in the context of the GLOBDATA project. GLOB-

DATA was an European IST project designed and implemented a data management

middleware tool, named COPLA. The tool offers the abstraction of a global object

database repository, supporting transactional access to geographically distributed

persistent objects independent of their location. COPLA supports the replication

of data according to different consistency criteria. Each consistency criteria is

implemented by one or more consistency protocols, that offer different trade-offs

between performance and fault-tolerance.

A general description of the algorithm is given, followed by a thorough de-

scription of its implementation within the COPLA tool. This implementation is

then evaluated against other COPLA consistency protocols.

KEY-WORDS: middleware, distributed systems, object-oriented databases,

fault-tolerance, replication, group communication.

Resumo

Esta dissertação aborda o problema de gestão de réplicas num sistema de bases

de dados orientado a objectos. Apresenta um protocolo que assegura a coerência

de dados entre os diferentes nós de um sistema. Este protocolo baseia-se em de-

senvolvimentos recentes nas técnicas de comunicação em grupo, e no uso da difu-

são atómica como um bloco de construção fundamental para ordenar transacções

em conflito.

Este protocolo foi concretizado no contexto do projecto GLOBDATA . O GLOB-

DATA é um projecto europeu no âmbito do qual foi concebida e desenvolvida uma

plataforma de gestão de dados, denominada COPLA. Esta plataforma oferece a

abstração de um repositório de objectos global, suportando o acesso transaccio-

nal a objectos persistentes geográficamente dispersos, independentemente da sua

localização. O COPLA suporta a replicação de dados de acordo com diferentes

critérios de coerência.

A dissertação apresenta primeiro uma descrição geral do algoritmo, seguida de

uma descrição pormenorizada da sua concretização na plataforma COPLA. Esta

concretização é de seguida avaliada e o seu desempenho comparado ao desempe-

nho dos restantes protocolos de coerência do COPLA.

PALAVRAS-CHAVE: sistemas distribuídos, bases de dados orientadas a ob-

jectos, tolerância a faltas, replicação, comunicação em grupo.

Acknowledgments

First, I would like to thank my thesis supervisor, Luís Rodrigues. His guidance,

both during the GLOBDATA project where I worked in the algorithm and its im-

plementation, and during the actual writing of the thesis, were invaluable.

My colleagues in the GLOBDATA project, Pedro Vicente, Ricardo Almeida

and Hugo Miranda, have made an enjoyable team to work in, and a source of

inspiration, good ideas and even great fun.

The other members of the DIALNP research group, M. João Monteiro, San-

dra Teixeira, Nuno Carvalho, Filipe Araújo and Alexandre Pinto, have made a

great environment to do research in, providing all sorts of interesting ideas and

concepts.

A word of appreciation goes to my fellow researchers of the LASIGE labora-

tory, and office companions, Norman Noronha, Daniel Gomes, Bruno Martins and

Miguel Costa from the XLDB group, for being good friends, and always willing

to discuss ideas completely outside their research topics.

Finally, a word to my parents, without their love and support I would have

never been able to complete this undertaking.

Lisboa, March 2003

João Travassos Cabral Martins

To my parents.

Contents

Contents i

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Objectives. 1

1.2 Results. 2

1.3 Thesis structure. 3

2 Related Work 5

2.1 Group communication primitives. 6

2.1.1 System model and failure semantics. 6

2.1.2 Group membership service. 8

2.1.3 View synchronous multicast. 8

2.1.4 View synchronous atomic multicast. 9

2.1.5 Uniformity . 10

2.1.6 Atomic commit protocol. 11

2.2 Postgres-R. 12

2.3 University of Minho’s partial replication. 13

i

2.4 Scalable middleware architecture. 15

2.5 The CNDS large-scale system. 19

2.6 Comparative analysis. 23

2.7 Summary . 26

3 The GlobData Architecture 27

3.1 Operating scenario. 27

3.2 COPLA components. 29

3.3 The Uniform Data Store. 31

3.3.1 GODL and GOQL. 32

3.3.2 Proxy and Packet Objects. 32

3.4 The consistency protocol layer. 33

3.5 The communications module. 33

3.6 The client interface library. 35

3.7 Interaction among components. 35

3.7.1 The COPLA transactional model. 35

3.7.2 Interaction with the consistency protocols. 36

3.8 Summary . 37

4 The NonVoting Protocol For GLOB DATA 39

4.1 Architectural challenges. 39

4.2 Replication using atomic broadcast. 40

4.3 Replication strategies. 42

4.4 The Non-Voting Protocol. 42

4.4.1 Description. 42

4.4.2 Using versions for concurrency control. 46

4.4.3 Objects and classes. 47

4.5 Implementation. 47

ii

4.5.1 The CP-API interface. 48

4.5.2 Class and function structure. 51

4.5.3 Detailed algorithm. 56

4.6 Optimistic delivery . 72

4.7 Summary . 78

5 Evaluation 79

5.1 The other COPLA protocols. 80

5.1.1 The full object broadcast protocol. 80

5.1.2 The voting protocol. 81

5.2 The testing environment. 82

5.2.1 Testbed. 82

5.2.2 The test application. 83

5.2.3 Expected abort rate. 84

5.2.4 Evaluated scenarios. 85

5.3 Evaluation. 86

5.3.1 Number of messages. 86

5.3.2 Scenario #1. 87

5.3.3 Scenario #2. 89

5.3.4 Scenario #3. 90

5.4 Analysis of the results. 92

5.5 Protocol comparison conclusions. 95

5.6 Summary . 95

6 Conclusion 97

6.1 Future work. 98

Bibliography 101

iii

iv

List of Figures

3.1 COPLA architecture. 30

4.1 Non-voting protocol. 45

4.2 CP-API interface . 48

4.3 Class structure of the protocol implementation. 52

4.4 Execution of a newSession request. 55

4.5 Execution of a commit request. 56

4.6 Non-voting protocol (detail) . 58

5.1 The output of a typical trace route between hosts in FCUL (Lis-

bon) and ITI (Valencia). 82

5.2 Read-only transactions distribution in scenario #1. 88

5.3 Transactions average time (ms) in scenario #1. 88

5.4 Transactions distribution in scenario #2. 89

5.5 Transactions average time (ms) in scenario #2. 90

5.6 Transactions distribution in scenario #3. 91

5.7 Transactions average time (ms) in scenario #3. 91

v

vi

List of Tables

2.1 Summary of system characteristics. 22

2.2 Replication strategy classification. 25

5.1 Messages issued by each protocol to commit one transaction. . . 87

5.2 Combinations of some factors that influence the decision of the

consistency protocol to use in COPLA. 93

vii

viii

Chapter 1

Introduction

Replication is often seen as a way to increase availability and performance in

distributed databases. However, until recently, strongly consistent database repli-

cation was thought to be too heavy to use in production environments. Gray et.

al. [13] argued that using conventional distributed locking for replication was not

feasible, and proposed other alternatives.

However, recent advances in distributed message ordering algorithms have

given rise to efficient total order broadcast algorithms. These algorithms guarantee

that messages broadcast to all the nodes within a system are delivered in the same

order in all processes. Replication algorithms that take advantage of this property

have been developed, which show promising results.

1.1 Objectives

This thesis approaches the problem of replica management in a distributed object-

oriented database system. It presents a protocol to ensure data consistency across

the different nodes of the system. This protocol relies on recent advances in group

communication techniques, and the use of atomic broadcast as a building block to

1

2 CHAPTER 1. INTRODUCTION

help serialize conflicting transactions.

This protocol was implemented in the context of the GLOBDATA project.

GLOBDATA is an European IST project that aimed to design and implement a mid-

dleware tool, named COPLA, offering the abstraction of a global object database

repository, supporting transactional access to geographically distributed persistent

objects independent of their location. COPLA supported the replication of data ac-

cording to different consistency criteria. Each consistency criteria is implemented

by one or more consistency protocols, that offer different trade-offs between per-

formance and fault-tolerance.

1.2 Results

The work described in this dissertation achieved different results. Namely, we

were able to:

• Contribute to the COPLA architecture, to enable it to use several different

consistency protocols, and make their implementation as independent as

possible from the other aspects of the database, like client program inter-

face, or object to table mapping.

• Adapt and implement an efficient mechanism for replica consistency main-

tenance, within the defined architecture. This protocol is based on existing

work [24], adapting it to meet the demands and constraints of COPLA.

• Evaluate the resulting implementation, by comparing it with other protocols

implemented for COPLA.

1.3. THESIS STRUCTURE 3

1.3 Thesis structure

This thesis is composed by six chapters, whose structure is outlined below.

Chapter2 begins with an overview of the more important concepts relating

group communications, and then presents an overview of current state-of-the-art

database replication algorithms, and a small comparative analysis of each system

is made at the end.

Chapter3 presents the overall architecture of the COPLA system. It explains

each of its modular components, their roles within the system, and the general

way they work and interact with each other.

Chapter4 describes the NonVoting consistency algorithm for the COPLA tool.

It begins by a general, abstract description of the algorithm, followed by an ex-

planation of the COPLA module where it will be implemented, and finally the

actual implementation is discussed. An optimization to the algorithm, taking ad-

vantage of a particular facility provided by a communication protocol, concludes

the chapter.

Chapter5 evaluates the NonVoting algorithm, by comparing its implementa-

tion with other protocols designed for the COPLA system. A thorough description

of the testing procedure is given, as well as the test results. An analysis of these

results is then performed.

Chapter6 concludes this document, and lays some guidelines for future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

In the database literature, one can find different alternatives to enforce replica

consistency. Some authors suggested voting schemes, where a certain number of

votesis given to each node, and a transaction can only proceed if there are enough

replicas to form a sufficientquorum[12, 11]. This quorum must be defined in

such a way that at least one replica detects conflicting transactions. The scala-

bility problems of this technique (and of other related replication techniques) are

identified in [13]. One of the main problems consists on the large number of dead-

locks that may occur in the face of concurrent access to the same data: the number

of deadlocks grows in the proportion ofn3 for n nodes. It has been suggested that

a technique to circumvent this problem is to implement some sort of master-slave

approach: each object belongs to a master node, and to avoid reconciliation prob-

lems, nodes that do not own an object make tentative updates, and then contact

that object’s master node to confirm those updates.

An alternative approach, that has been studied in recent works, is to use a repli-

cation scheme based on the use of efficient atomic multicast primitives. Systems

such as [24, 16, 23] use the message order provided by atomic broadcast to aid in

the serialization of conflicting transactions.

5

6 CHAPTER 2. RELATED WORK

In this chapter, several database replication systems that are based on this prin-

ciple will be surveyed. Before that, we make a brief survey of the main group

communication primitives that are used to support the replication protocols.

2.1 Group communication primitives

The work presented in this thesis is a replication algorithm that uses the guarantees

offered by a group communication system. As it will be shown, these properties

simplify the task of replication considerably. Knowledge about group communi-

cations is required, in order to properly understand the systems presented below,

as well as the subject of this thesis, and the reasoning behind its design.

2.1.1 System model and failure semantics

Before defining the communication primitives, we must give a clear description

of the system model they assume. We will use the model presented in [32].

The system model described here is known as theasynchronous model, where

there is no bound on message delay, clock drift, or the time necessary to execute

a processing step. Its definition is patterned after the ones in [10, 8].

We consider a set of processespi ∈ P , connected through a set of communi-

cation channelsci j ∈C (ci j connectspi to p j). Communication is asynchronous,

i.e. there is no bound on communication delays.

A process is a finite deterministic automaton (with possibly infinitely many

states) [10, 8]. A process may either be correct or failed. Acorrect process ex-

ecutes steps from its automaton. When a correct process crashes, we say that it

failed. A failedprocess stops executing (Byzantine errors [21] are not considered).

For the purposes of group communication, a crashed process does not recover.

A recovering process is given a new identifier, and is treated by the group commu-

2.1. GROUP COMMUNICATION PRIMITIVES 7

nication system as a new process. This "new" process may have access to the state

of the "old" process (if part or all of its state is saved on permanent storage), but

synchronizing this state with the rest of the system is handled at the application

level.

Communication channelsci j are assumed to be reliable (a messagem sent by

processpi to processp j will eventually reachp j if neither pi nor p j fail) and to

deliver messages in FIFO order.

It is a well know result that in this model, it is impossible to distinguish a

crashed process from a slow process or a process connected through a slow chan-

nel. This observation has led to the impossibility result [10] on distributed con-

sensus1, and to the definition of the synchronous model with bounded delays. The

synchronous model has some attractive features, but has the drawback to lead to

poor performances because worst case assumptions must be made on communi-

cation delays.

The model we shall consider in this thesis is calledvirtually synchronous[4,

5]. It can be defined as the asynchronous model completed with animperfect

failure detector[8], 3S, that has the following properties:

• Strong Completeness: Eventually every process that crashes is suspected

by every correct process.

• Eventually Weak Accuracy: There is a time after which some correct pro-

cess is never suspected by any correct process.

With this failure detector, we can now construct interesting services, that form

our group communication system: a group membership service, that summarizes

the failure detection information intoviews, and communication primitives.

1Informally, in the consensus problem, a set of processes must agree on a common value,
chosen from the values each participant initially proposes. The problem is solved when every
non-faulty participant reaches a decision.

8 CHAPTER 2. RELATED WORK

2.1.2 Group membership service

Consider processes structured into groupsg used in the context of multicasts: each

multicastm is addressed to a groupg, i.e. to every processpi ∈ g. For a groupg of

processes, the group membership service GMS is assumed to construct a sequence

of views v0(g),v1(g), ...,vi(g), ...(vi(g)⊆P) corresponding to the successive com-

position of the groupg as perceived by GMS, and to deliver each viewvi(g) to the

members of the view. The sequence of views satisfies the following conditions:

• if processp∈ g has crashed, then GMS will eventually detect it and define

a new view from whichp is excluded (ifp recovers after the crash, it comes

back with a different process id, and is thus considered as a new process);

• if a processp joins the groupg, FD will eventually detect it, and define a

new view includingp;

• if a view vi(g) is defined andp ∈ vi(g), then eitherp eventually receives

view vi(g), or∃k > 0, such thatp 6∈ vi+k(g);

• ∀p,q∈ g, if p andq receive viewsvi(g) andv j(g)(i 6= j), thenp andq both

receivevi(g) andv j(g) in the same order.

2.1.3 View synchronous multicast

In the context of the model defined above, the semantics of view synchronous

multicast are defined by three properties [36], listed below.

Consider a groupg, a viewvi(g) and a messagem multicast tog.

• Delivery Integrity: If a process deliversm in vi(g), then some process has

multicastm.

2.1. GROUP COMMUNICATION PRIMITIVES 9

• No Duplication: For any messagem multicast by a process,m is delivered

at most once at each process invi(g).

• Regular Virtual Synchrony: If ∃p ∈ vi(g) which has deliveredm in vi(g)

and has installed a viewvi+1(g), then all processesq ∈ vi(g) which have

installedvi+1(g) have deliveredm before installingvi+1(g).

Intuitively, these properties state that, when a view change occurs, we can be

sure that all processes that have passed from the previous view to the current one

(i.e., all correct processes) have received the same set of messages. This is why

the system is namedview synchronous: a view change defines asynchronization

point between all processes.

2.1.4 View synchronous atomic multicast

View synchronous multicast guarantees that all correct processes will receive the

same set of messages. However, it says nothing about the order of such messages.

This primitive builds upon view synchronous multicast, defined above, guarantee-

ing that all processes will see the same message order.

View synchronous atomic multicast (also called atomic multicast, or ABCast)

semantics can be defined by an additional property [36] (in addition to the three

defined above),total order.

Let m andm′ be two messages that are ABcast in viewvi(g).

• Regular Total Order: If any two correct processesp,q∈ vi(g) deliver both

m andm′, they deliver them in the same order.

Intuitively, the total order property states that all processes see the same order

of messages.

10 CHAPTER 2. RELATED WORK

2.1.5 Uniformity

Both the view synchronous and the atomic multicast primitives can have two ver-

sions: uniform and non-uniform (the definitions given above are non-uniform).

From the model definition above, we recall that a correct process is one who

“survives” a view change, i.e.,p ∈ vi(g)∧ p ∈ vi+1(g)⇒ p is correct invi(g).

If we examine the definitions given in sections2.1.3and2.1.4, they apply their

properties only to correct processes. As such, we say they arenon-uniform.

Uniformversions of these primitives contemplate in their definitions both cor-

rect and failed processes. The uniform versions of view synchronous multicast and

atomic multicast are given below (only the properties that changed are shown, the

others remain the same).

Uniform view synchronous multicast:

• Uniform Virtual Synchrony: if ∃p ∈ vi(g) which has deliveredm in vi(g),

then all processesq∈ vi(g) which have installedvi+1(g) have deliveredm

before installingvi+1(g).

Uniform atomic multicast:

• Uniform Total Order: if any two processesp,q ∈ vi(g) deliver bothm and

m′, they deliver them in the same order.

What is the practical difference between regular and uniform versions of the

primitives? With regular ABCast, the following situation can occur: a processp∈

vi(g) receives a messagem, processes it, stores the result on disk and then crashes.

Meanwhile, all the other processes had not yet receivedm, and upon detecting the

failure of p, install a new viewvi+1(g), and decide a different order for messages

(they deliver a messagem′ beforem). This means that the information stored by

p before crashing will be inconsistent with the rest of the system, making any

subsequent reintegration process extremely difficult.

2.1. GROUP COMMUNICATION PRIMITIVES 11

As such, in GLOBDATA , we will use the uniform versions of the primitives.

2.1.6 Atomic commit protocol

Some systems use a specialized communication primitive to decide if a transaction

should commit or abort. This primitive is called atomic commit, and works by

collecting avote(yes or no) of each participant regarding the fate of a transaction.

An unanimousyesvote will commit the transaction, a site votingnowill abort the

transaction.

More formally, an atomic commit protocol can be defined by the following

properties [14]:

• Agreement: For all p,q∈ vi(g), p andq reach the same decision.

• Termination: Every processp ∈ vi(g) that also installsvi+1(g) eventually

decides.

• Validity: If a processp∈ vi(g) decidescommit, then all processesq∈ vi(g)

have votedyes.

• Non-Triviality: If all processesp∈ vi(g) voteyesand also install viewvi+1(g),

then all processesp eventually decidecommit.

Informally, the agreement property states that all processes will reach the same

decision, the termination property that all correct processes will eventually decide,

the validity property that a process will only decide commit if every process voted

yes, and the non-triviality property that if all correct processes voted yes, then all

processes will eventually decide commit.

12 CHAPTER 2. RELATED WORK

2.2 Postgres-R

The Postgres-R [20] system is a modification to the PostgreSQL [27] database

kernel, that adds a transparent replication layer within the database. This layer

uses Ensemble [15] as the underlying group communication system, making use

of its total order primitive.

Transaction messages are multicast using the total order primitive, and the

order of their delivery is used to determine the serialization order of conflicting

transactions. The authors presented several such protocols in [18], each of them

guaranteeing different transaction isolation semantics. The protocol that ensures

transaction serializability can be briefly described as follows:

1. Local read phase: Perform all read operations locally, acquiring the ap-

propriate local read locks. Execute write operations on shadow copies (no

write locks are acquired).

2. Send phase:If Ti is read only, then commit. Else bundle all writes into

write setWSi and ABCast it to all sites including the sending site (same

delivery order at all sites).

3. Lock phase: Upon delivery ofWSi , request all local locks forWSi in an

atomic step:

(a) For each operationwi(X) on itemX in WSi :

i. Perform a conflict test: if a local transactionTj has a granted lock

onX andTj is still in its read or send phase, abortTj . If Tj is in its

send phase, then multicast the decision messageabort (decision

messages are not ordered).

ii. If there is no lock onX, grant the lock toTi . Otherwise enqueue

the lock request directly after all locks from transactions that are

2.3. UNIVERSITY OF MINHO’S PARTIAL REPLICATION 13

beyond their lock phase.

(b) If Ti is a local transaction, multicast the decision messagecommit(no

order requirement).

4. Write phase: Whenever a write lock is granted apply the corresponding

update. A local transaction can commit and release all locks once all up-

dates have been applied to the database. A remote transaction2 must wait

until the decision message arrives and terminate accordingly.

In this protocol, the total order is used to serialize write/write conflicts at all

sites. Read/write conflicts are also detected during the lock phase (3.a.i). Since

read operations are only seen at the local site, local readers are aborted when a

conflicting writer arrives, thus avoiding deadlocks and inconsistent solutions.

Due to the choice of implementing the replication layer at the core of the

database, the authors had the chance (and burden) of inspecting closely the trans-

action execution and locking strategies of PostgreSQL, and to enhance / modify

them where suitable. For instance, traditional PostgreSQL uses logical locking at

the relation level, but a more efficient approach was taken by Postgres-R, tuple-

based locking. This kind of locking is more fine grained, and allows for greater

parallelism between transactions. Index locking was also modified, to avoid dead-

locks with remote transactions.

2.3 University of Minho’s partial replication

This work, described in [33], presents a replication algorithm that models the

database as a state machine [25] (from now on refered to as DBSM approach).

This model assumes that a transaction is first executed locally at a site, and in-

teraction with other sites occurs only when the client requests for the transaction
2A remote transaction is a transaction that was initiated on another node.

14 CHAPTER 2. RELATED WORK

commit. At that time, the transaction’s updates and some control structures are

propagated to all database sites.

The novelty of this work is that, unlike previous works, it considerspartial

replication, that is, each node within the system possesses a partial copy of the

database.

The authors base their algorithm on two communication primitives: a fast

atomic broadcast protocol, that provides optimistic message delivery [26], and a

Resilient Atomic Commit (RAC) protocol. This protocol provides the same guar-

antees as an atomic commit protocol [14], but allows fora) nodes having only

partial copies of the database, andb) allows that participants in the protocol de-

cide commit even if some nodes are suspected to have failed or crashed. Briefly,

the properties of RAC can be described as their difference to the properties offered

by regular atomic commit protocols (see??).

The RAC differs in its validity and non-triviality properties, considering that

Items(t) is the set of objects read by a transactiont, andSites(x) is the set of sites

that have a copy of objectx:

Validity If a site declarescommitfor t, then for eachx∈ Items(t), there is at least

a site inSites(x) that votedyesfor t.

Non-Triviality If for eachx∈ Items(t) there is a sites∈Sites(x) that votesyesfor

t and it is not suspected, then every correct site eventually decidescommit

for t.

The replication protocol itself is a modification of the one employed in the

DBSM approach. In DBSM, a transaction executes locally at a site, and when the

commit is requested, an atomic broadcast message is sent, containing the transac-

tions read and write sets. When the message is delivered from total order, a certi-

fication test is performed, to ensure that the transaction is valid. If the transaction

2.4. SCALABLE MIDDLEWARE ARCHITECTURE 15

passes the certification test, it can be committed. Since the test is deterministic,

and all sites receive transaction messages by the same order, all site will reach the

same decision.

This approach does not work with partial replication. The certification test

gives different results at each site, precisely because sites hold only partial copies

of the database. As such, the certification step is modified. When a transaction

is delivered from total order, the certification test is performed on it. Its outcome

will then be the input to the RAC protocol. If the outcome of the RAC protocol is

commit, then the transaction may be committed, otherwise it is aborted. This final

commit step is in effect enforcing the certification step against the full database, in

a distributed fashion. The use of RAC instead of a traditional atomic commit pro-

tocol is crucial: if a traditional protocol was used, the system would become less

resilient to failures, since the suspicion of a single node would cause a transaction

to abort.

The addition of an extra communication step at the end of each transaction

naturally incurs a penalty in performance. To overcome this an optimistic atomic

broadcast protocol is used. When a transaction message is optimistically deliv-

ered, the RAC protocol is initiated, therefore overlapping its execution with the

atomic broadcast. If the final order confirms the tentative one, this overlapping

incurs in substantial time savings. Should the ordering of the two deliveries mis-

match, both the certification and the atomic commit executions are discarded and

the process is repeated for the final order.

2.4 Scalable middleware architecture

This system, presented in [17], proposes a middleware replication architecture,

which sits between clients and a conventional database system, and is composed

16 CHAPTER 2. RELATED WORK

of several modules.

The transaction manager implements the replication protocol. It coordinates

with the other sites through the exchange of messages, interacts with client ap-

plications, and submits transactions to the local database. The communication

manager is the interface between the transaction manager and the group com-

munication system, Ensemble [15]. The transaction manager interacts with the

database through the connection manager. In this system the database used is

PostgreSQL [27].

The replication protocol, described in detail in [23] uses the concept ofconflict

classesfor load partitioning. The initially available data is divided into disjoint

conflict classes, which can be as small as a tuple, or as large as an entire ta-

ble. These basic conflict classes are then grouped intocompound conflict classes.

These compound conflict classes do not need to be disjoint, but they are required

to be distinct. The load is divided based on compound conflict classes. Each

compound conflict class has amasteror primary site. A transactionT can access

any compound conflict class, and it is assumed that the accessed class is know in

advance (CT).

A transactionT is considered to belocal to the master site ofCT , andremote

everywhere else. For example, consider two sitesN and N′, and two conflict

classesCx andCy, with N being the master site of the compound conflict classCx

andN′ the master site ofCy andCx,Cy. A transaction updatingCx is local toN

and remote atN′, a transaction updating bothCx andCy is local atN′ and remote

at N. A query over any of the three basic conflict classes can be local to eitherN

or N′. For concurrency purposes, a simple locking table is used: each site has a

queueCQx associated to each conflict classCx. Upon delivery of a transactionT

that accesses a compound conflict classCT , each site addsT to the queues of the

basic conflict classes contained inCT .

2.4. SCALABLE MIDDLEWARE ARCHITECTURE 17

The replication scheme makes use of an advanced total order algorithm [26]

that provides optimistic message delivery. This means that the communication

protocol first makes a tentative deliver of the message, which can be considered

a good estimate on its final, definitive order. The protocol later delivers the same

message in its final order. This tentative delivery is used by the replication layer to

begin executing transactions earlier, building on the assumption that the ordering

estimate is accurate most of the time.

A transaction is processed as follows. At its start,T is broadcast to all sites.

Only Ts master site executesT. After completing the execution, the master site

broadcasts a commit message to all other sites and piggy-backs to this message the

result of all modifications performed byT (i.e., the write set ofT). Upon receiving

these modifications, a remote site proceeds to install the changes directly without

having to execute the transaction.

The replication algorithm employed can then be described in terms of the

events that occur during the lifetime of a transactionT – T is optimistically deliv-

ered (opt-delivered),T is delivered in its final order (to-delivered),T completes

execution, andT commits.

When a transactionT is opt-delivered, it is queued in all the basic conflict

classes it belongs to. This is done at all sites. At the master site ofT, onceT is

the first transaction in all queues, it is submitted for execution.

WhenT finishes execution (this happens only at the master site ofT), the to-

delivery of T might have taken place. If it has, thenT can be committed, since

it is the first transaction in all its queues, and there cannot be a conflicting trans-

action ordered beforeT neither in the tentative order or the definitive order. The

commit message is then broadcast to all sites. If the transaction has not been to-

delivered, it is marked as executed. Waiting for the to-delivery before committing

the transaction is necessary to avoid conflicting serialization orders at different

18 CHAPTER 2. RELATED WORK

sites.

When the to-delivery ofT is processed atT ’s master site,T may or may not

have been executed. If it is executed, thenT is the first transaction in all of its

queues, and there is no mismatch between its tentative and final order. As such,T

can be committed, and the commit message is broadcast to all sites. If the trans-

action has not yet executed or is not local, the protocol checks for mismatches

between the tentative and final orders ofT, which would lead to incorrect exe-

cutions. If any conflicting transactionT ′ has been opt-delivered beforeT but not

yet to-delivered, then it is incorrectly ordered beforeT in the queues they have

in common. HenceT andT ′ must be reordered, such thatT is scheduled before

T ′. This would happen ifT was already executing or had already completed its

execution and was waiting to be committed. However, note that the abort only

occurs at the site whereT ′ is local (on all other sitesT ′ is remote; thus, reordering

only requires to switch the transactions in the queues). Moreover, the probability

for this situation to occur is quite low as it requires that messages get out of order

and that the messages that are out of order correspond to transactions that conflict

and one of the transactions is being or has been executed at that site.

A local transaction commits by submitting a commit to the database. At re-

mote sites, the updates received in the commit message are applied after the trans-

action has been to-delivered to ensure that the updates are applied following the

total (serialization) order. When the updates are applied and the commit has been

submitted to the database, the transaction is removed from the queues. This pro-

tocol guarantees 1-copy serializability.

2.5. THE CNDS LARGE-SCALE SYSTEM 19

2.5 The CNDS large-scale system

This system, developed at CNDS [7] aims to provide a software layer that sits

between client applications and the database, providing replication in a transparent

manner, both to clients and to the database. It is described in [2].

The system is separated in two layers: a replication server and a group com-

munication toolkit, named Spread [1].

Each of the replication servers maintains a copy of the database. When a client

requests an action from the database, the replication servers agree on the order of

the actions to be applied to the databases. As soon as the final order of an action

is known, it is applied to the database. The replication server that received the

request returns the database reply to the client. The replication servers use the

group communication layer to disseminate the actions among the servers group

and to help reach an agreement on the global final order of the set of actions.

The group communications toolkit offers primitives according to the Extended

Virtual Synchrony model [22]. The replication algorithm relies particularly on the

Safe Delivery3 property.

The replication server is composed of three modules:

• A replication engine, that includes all of the replication logic, an can be

applied to any database or application. It is based on the algorithm presented

in [2].

• A semantics optimizer, that decides whether to replicate transactions and

when to apply them based on the required semantics and the actual content

of the transaction.

3Informally, this property ensures that, if a process delivers a message, then that message will
be received and delivered by every other process in the same view, unless that process fails. The
reader should refer to [22] for a more formal description.

20 CHAPTER 2. RELATED WORK

• A database specific interceptor, that interfaces the replication engine with

the DBMS client-server protocol. This interceptor allows existing Post-

greSQL applications to be used seamlessly. Neither the applications nor the

database need to be changed. A similar interceptor could be built to support

other databases.

The replication engine uses the group communication toolkit to provide global

persistent consistent order of actions in a partitionable environment. This is ac-

complished using a synchronous disk write per action at the originating replica,

the minimum operation required to cope with a crash-recovery failure model.

In the presence of network partitions, the replications servers identify at most a

single component of the servers group as the primary component. When a server

belongs to a primary component partition, it can apply actions immediately to

the database, upon their delivery by the group communications system. When

in a non-primary component, the actions are applied according to the semantics

optimizer component, described below. Updates generated in non-primary com-

ponents will be propagated as network connectivity changes. These updates will

be ordered in the final persistent consistent order upon the formation of the first

primary component that includes them.

The semantics optimizer provides the ability to support various consistency

models, according to varying application requirements. In the strictest model of

consistency, updates can be applied to the database only while in a primary com-

ponent. When the global persistent order of actions has been determined. How-

ever, read-only actions do not need to be replicated, thus they can be answered

immediately.

The replication algorithm takes into account the existence of network parti-

tions. As such, at any given time it considers a set of sites that form a majority

partition, called the primary component. Only the sites in this primary component

2.5. THE CNDS LARGE-SCALE SYSTEM 21

are able to perform transactions.

The algorithm divides actions (transactions) to be performed incolors. These

colors are:

Red action An action that has been ordered within the local component by the

group communication layer, but for which the server cannot, as yet, deter-

mine the global order.

Green Action An action for which the server has determined the global order.

White Action An action for which the server knows that all of the servers have

already marked it as green. These actions can be discarded since no other

server will need them subsequently.

Transactions are marked with a certain color according to the algorithm, that

can be described in terms of the state that a server is in. There are four possible

states.

Prim State. The server belongs to the primary component. When a client submits

a request, it is multicast using the group communication to all the servers in

the component. When a message is delivered by the group communication

system to the replication layer, the action is immediately marked green and

is applied to the database.

NonPrim State. The server belongs to a non-primary component. Client actions

are ordered within the component using the group communication system.

When a message containing an action is delivered by the group communi-

cation system, it is immediately marked red.

Exchange State.A server switches to this state upon delivery of a view change

notification from the group communication system. All the servers in the

22 CHAPTER 2. RELATED WORK

System Architecture Scale Total Order Algorithm

Postgres-R Integrated in DB LAN Conventional TO
UM Integrated in DB LAN/Wide Optimistic + RAC

SMA Middleware layer LAN Optimistic TO
CNDS Middleware layer Wide Custom

Table 2.1: Summary of system characteristics

new view will exchange information allowing them to define the set of ac-

tions that are known by some of them but not by all. These actions are sub-

sequently exchanged and each server will apply to the database the green

actions that it gained knowledge of. After this exchange is finished each

server can check whether the current view has a quorum to form the next

primary component. This check can be done locally, without additional ex-

change of messages, based on the information collected in the initial stage

of this state. If the view can form the next primary component the server

will move to the Construct state, otherwise it will return to the NonPrim

state.

Construct State. In this state, all the servers in the component have the same

set of actions (they synchronized in the Exchange state) and can attempt to

install the next primary component. For that they will send a Create Primary

Component (CPC) message. When a server has received CPC messages

from all the members of the current component it will transform all its red

messages into green, apply them to the database and then switch to the Prim

state. If a view change occurs before receiving all CPC messages, the server

returns to the Exchange state.

2.6. COMPARATIVE ANALYSIS 23

2.6 Comparative analysis

Despite the fact that all of these systems are similar to each other, since they base

their replication mechanism on the properties of virtual synchrony and total order,

they also have a number of significant differences. Table2.1summarizes each of

the systems main characteristics.

The first system, Postgres-R, is built into the core of the database. This feature

allows it to take advantage of the knowledge of the inner workings of the database

to achieve greater parallelism in transaction processing. It also enables to use

more efficient message mechanisms (propagating actual table changes instead of

the transaction request, which would have to be re-executed).

This option comes at a cost, however. It’s positioning means that it will be tied

to the particular database used, making it impossible to change. Also, implemen-

tations using commercial databases become very difficult.

Continuing in the line of replication layers integrated within the database, the

system proposed by the Univ. of Minho proposes an enhancement to the work

of Postgres-R: it supports partial replication, that is, instead of all nodes having

a copy of the full database, they maintain solely a partial copy. This brings per-

formance benefits, since a lot of applications exhibit a high locality access pattern

(i.e., they access only a portion of the database). By partitioning the database

carefully, performance gains can be achieved.

This facility comes at a cost, however: an additional communication step is

required to validate a transaction, because each node does not possess enough

information to do this on it’s own. The authors offset this by using an optimistic

total order algorithm, which enables the system to start the validation step sooner.

The work of Peris et. al. proposes a different architecture from the previous

two. Its replication layer is placed outside the database, between the client ap-

plications and the database. Neither of these components realize that replication

24 CHAPTER 2. RELATED WORK

exists. This approach brings a new degree of freedom to the system, but at a cost:

there is much less knowledge of the effects of transaction, and as such the ordering

of messages must be much more strict (Postgres-R uses its “inside knowledge” to

reorder some transactions). Because of this, they also focused on the use of ef-

ficient total order algorithms, which provide optimistic delivery, to enhance the

performance of the system.

The final system described here, by the CNDS group, also has a middleware

architecture, sitting transparently between the database and client applications.

The novelty of this work relies in their consideration for wide scale applications,

and the problem of network partitions. This has lead the authors to use a signifi-

cantly different total order algorithm, and greater efforts must be made to ensure

the system does not become incoherent.

In summary, despite the common idea of resolving transaction conflicts with

the use of total order, the actual implementations can be quite different. However,

all of these systems share a common trait: their performance depends as much

on the replication algorithm itself as on the communication protocol used. This

can be seen, for instance, comparing the first and second systems presented: both

Postgres-R and the system of Peris et. al. can benefit from similar communication

protocol improvements (in fact, the authors of both these systems have cooperated

with each other), despite the apparent difference in architectures. However, the

difference between the CNDS system and the Peris et. al. system is patent, in

terms of communication protocols and replication strategy employed, despite the

similar architecture.

We can also study these systems according to the classification presented

in [37]. This classification proposes three parameters:

Server Architecture: Where transactions are executed. The possibilities areup-

date everywhere, when updates are performed on all servers, andprimary

2.6. COMPARATIVE ANALYSIS 25

System Server Architecture Server Interaction Tx. Termination

Postgres-R update everywhere constant voting
UM update everywhere constant voting

SMA update everywhere constant non-voting
CNDS update everywhere constant non-voting

Table 2.2: Replication strategy classification

copy, when updates are performed on a server which owns the modified

data, which will subsequently propagate changes to the replicas.

Server Interaction: The degree of communication between replication servers

during transaction execution. The alternatives areconstant interaction, when

a constant number of messages is exchanged, independently of the number

of operations performed by each transaction, andlinear interaction, when

the number of messages exchanged grows linearly with the number of op-

erations a transaction performs.

Transaction Termination: The way the transactions terminate, i.e., how atom-

icity is guaranteed. The options arevoting termination, when there is an

additional round of messages to coordinate the replicas, andnon-voting ter-

mination, when each site can decide on their own whether to commit or

abort a transaction.

In light of these parameters, we can classify each of the systems presented

according to Table2.2.

The first conclusion we can draw from this table is that all systems use a

constant interaction scheme. This is clearly, in the general case, the most efficient

design, because the number of messages used will be independent of the number

of operations performed by a transaction.

Secondly, all systems use the update everywhere approach. This approach

26 CHAPTER 2. RELATED WORK

sacrifices some performance for much higher availability and easier re-integration

of failed nodes. Even the UM system, which supports partial replication, uses

update everywhere: it updates all sites owning copies of changed database items.

The main difference among these systems depends on the way they terminate

the transactions.

The Postgres-R system uses a voting strategy.4 The choice was made to dis-

seminate less information (only the write-set of each transaction) and use one final

round of messages to confirm the transaction’s outcome.

The UM system also uses a confirmation step. However, this system tries to

minimize the impact of using two rounds of messages by starting the confirmation

step earlier, using the results of the optimistic atomic broadcast as an input to the

RAC confirmation protocol.

Both the SMA and CNDS systems use a non-voting approach, propagating

enough information to allow each node to decide for itself whether a transaction

should commit or abort. SMA also takes advantage of optimistic delivery to speed

up the confirmation process when possible.

2.7 Summary

This chapter presented a survey of a few replication systems that make use of

atomic broadcast primitives as an aid in ordering conflicting transactions. To

aid in the understanding of these systems, a brief survey of the used primitives

was also presented. The next chapter will describe the overall architecture of the

GLOBDATA project’s middleware tool, COPLA.

4The reader should refer to [18] for a complete description of the algorithm.

Chapter 3

The GlobData Architecture

The aim of the GLOBDATA project is to build a middleware tool, named COPLA,

that provides transparent access to a replicated repository of persistent objects.

Replicas can be located on different nodes of a cluster, of a local area network,

or spread across a wide area network spanning different geographic locations.

To support a diversity of environments and workloads, COPLA provides a num-

ber of replica consistency protocols. This effort was undertaken by a team of

academic and industrial partners, under the European Union IST program (IST-

1999-20997). The academic partners are the Instituto Tecnológico de Informática

de Valencia (ITI), Spain; the Faculdade de Ciências da Universidade de Lisboa

(FCUL), Portugal and the Universidad Pública de Navarra (UPNA), Spain. The

industrial partners are GFI Informatique (GFI), France; and Investigación y De-

sarrollo Informático (IDI EIKON), Spain.

3.1 Operating scenario

The architecture of a software system like COPLA is naturally influenced by the

expected usage pattern and by the network’s layout on which it will run.

27

28 CHAPTER 3. THE GLOBDATA ARCHITECTURE

It is assumed that different areas, formed by groups of nodes, exist throughout

the network. Nodes belonging to the same area are physically close. One example

in the real world could be an enterprise with delegations in different cities, the

computers in each delegation forming an area. To adapt itself to this model, the

system is organized as follows:

• There is a set of special nodes, one per area, called managers. Each manager

is in charge of serving the COPLA applications on its own area.

• Applications access only its nearest manager, i.e., the manager for its area.

Each manager uses one database as a tool that provides data persistence.

This fact (that there are many physical databases) is completely transparent

to the applications.

• Each physical database holds, in theory, an exact replica of all persistent

objects. In practice, the consistency protocol used will determine the infor-

mation stored at each database.

• There is a protocol run among the managers (consistency protocol) to coor-

dinate them so as they can:

– provide up-to-date consistent objects to client applications.

– distribute the results of transactions made by a client application.

– resolve conflicts by concurrent transactions running on the same or on

different areas.

– provide some degree of fault tolerance, taking advantage of the fact

that data is replicated.

• Transactions issued by a client are executed by its corresponding manager

using data exclusively on its database (Again, the consistency protocol used

will determine the exact details).

3.2. COPLA COMPONENTS 29

• If a manager fails, the system should continue operations as much as possi-

ble, always ensuring data integrity and consistency:

– user applications that were being served by a failed manager will not

be able to continue until it recovers (unless they can connect to another

manager).

– if the failed manager was the only one storing the up-to-date version

of an object, user applications requiring that object will be suspended

until it recovers. (Each consistency protocol will make an effort to

make available two or more up-to-date replicas of each object).

3.2 COPLA components

The main components of a COPLA manager node’s architecture are depicted in

Figure3.1. The upper layer is a “client interface” module, that provides the func-

tionality used by the COPLA applications programmer. The programmer has an

object-oriented view of the persistent and distributed data: it uses a subset of Ob-

ject Query Language [6] to obtain references to distributed objects. Objects can

be concurrently accessed by different clients in the context of distributed transac-

tions.

For fault tolerance, and to improve locality of read-only transactions, an object

database may be replicated at different locations. Several consistency protocols

are supported by COPLA; the choice of the best protocol depends on the topology

of the network and of the application’s workload. To maintain the user interface

code independent of the actual protocol being used, all protocols adhere to a com-

mon protocol interface (labeled CP-API Figure3.1). This allows COPLA to be

configured according to the characteristics of the environment where it runs.

As it is shown in Figure3.1, the system is composed of three main modules:

30 CHAPTER 3. THE GLOBDATA ARCHITECTURE

Client application

Client interface

Consistency protocols

Uniform Data
Store (UDS)

COPLA

CP-API

UDS-API PER-API

Communications
module
(atomic

broadcast)

Figure 3.1: COPLA architecture

Client Interface: This module is what is exposed to the COPLA applications pro-

grammer. It is responsible for presenting an interface for developing client

applications, and for communicating with the two other modules (consis-

tency protocols and the UDS (uniform data store)) to perform its tasks.

Clients access this module through CORBA calls.

Consistency Protocols:This module is in charge of maintaining the data stored

in different replicas mutually consistent. The consistency protocols com-

municate with other nodes in the system using the communication module.

The different protocols offer an uniform interface to the above layer (labeled

CP-API in Figure3.1). This allows COPLA to be configured according to

the characteristics of the environment where it runs.

Uniform Data Store: The uniform data store (UDS) module (developed by the

Universidad Pública de Navarra) is responsible for storing the state of the

persistent objects in an off-the-shelf relational database management system

(RDBMS). To perform this task, the UDS exports an interface, the UDS-

3.3. THE UNIFORM DATA STORE 31

API, through which objects can be stored and retrieved. It also converts

all the queries posed by the application into normalized SQL queries. Fi-

nally, the UDS is used to store in a persistent way the control information

required by the consistency protocols. This control information is stored

and accessed through a dedicated interface, the PER-API.

The architecture of each module is sketched out in the next few sections, in a

bottom-up order, to facilitate discussion.

3.3 The Uniform Data Store

As stated above, the UDS layer is responsible for the persistent storage of objects,

and the interpretation of user queries.

In detail:

• Opening and closing transactions in the local object repository.

• Accessing objects or collections of objects in the local object repository.

• Committing and aborting transactions.

• Retrieving read and write sets in order to maintain data consistency by

COPLA.

• Building transaction updates, containing the changes made by a transaction.

• Applying transaction updates.

To store objects in an efficient and transparent (to upper layers) manner, the

UDS uses Proxy and Packet Objects. To accept user queries, it interprets GOQL

statements. To accept repository specifications, it uses GODL schemata.

32 CHAPTER 3. THE GLOBDATA ARCHITECTURE

3.3.1 GODL and GOQL

GODL stands for GLOBDATA Object Definition Language. It is a declarative

language used to define persistent objects for the COPLA tool. It is based on

the Object Definition Language [6]. Using GODL, a programmer specifies the

classes that will be present in the repository, and the relations between them. This

definition will then be processed by a compiler, that will generate two outputs: a

set of proxy objects (described below), and an SQL schema, to be placed in the

underlying RDBMS.

The GOQL (GLOBDATA Object Query Language) language is used to present

queries to the COPLA system. It is based upon Object Query Language [6], the

companion standard to ODL. The UDS is in charge of translating, in run time, a

GOQL query to a series of SQL statements that retrieve the desired object data

from the RDBMS.

3.3.2 Proxy and Packet Objects

Here, the term proxy is used to refer to a local instance of a remote object. Since

the objective is to maintain a high degree of transparency relative to the client

application, all local transformations of object properties have to be reflected with

a high degree of effectiveness in the uniform data store layer.

A proxy object is used to represent, on the programmer’s side, an instance of a

class (i.e., an object) that was defined through GODL. These instances are created

as a result of a GOQL query to the system. It contains methods for manipulating

the object’s attributes and relations.

The proxy object is also responsible for persistently storing it’s state. In order

to do this, each proxy object is able to generate a representation of itself, called

a packet object. This representation is designed to be interpreted by the UDS

3.4. THE CONSISTENCY PROTOCOL LAYER 33

efficiently, for storage in the database, and for transmission over the network.

A packet object contains all the required information for an UDS at a COPLA

site to instantiate a proxy object, to make it’s data accessible to a client.

3.4 The consistency protocol layer

The consistency protocol (CP) layer is designed as a common interface for several

different protocols. It is mostly a “placeholder” module, with little more than a

specified API. Each consistency protocol then implements this API in order to

perform its work.

Since the subject of this thesis is a consistency protocol designed to fit this

interface, the CP layer and its interface will be described in greater detail in the

following chapter.

3.5 The communications module

The two strong consistency protocols implemented in the COPLA middleware

make extensive use of the properties of an atomic multicast protocol. To effi-

ciently support the consistency protocols, a protocol designed for large-scale op-

eration has been implemented [35].

The protocol is an adaptation of the hybrid total order protocol presented

in [29]. The hybrid protocol combines two very known solutions for total order:

sequencer based and logical clocks. A process may be active or passive: if it is

active then it orders messages for itself and others; if it is passive then it has an ac-

tive process that orders his messages. If more that one active process exists, then

the order is established using logical clocks. The processes can change their role

depending on the number of messages transmitted and the network delay between

34 CHAPTER 3. THE GLOBDATA ARCHITECTURE

themselves and the other processes. These characteristics optimize the protocol

behavior in large-scale networks.

Unfortunately, the original protocol as presented in [29] supports only a non-

uniform version of atomic multicast, i.e., the order of messages delivered to crashed

processes may differ from the order of messages delivered to correct processes.

In the database context, this may lead to the state preserved in the database of a

crashed process to be inconsistent. Therefore, in COPLA, one needs an uniform

total order protocol, i.e. a protocol that ensures that if two messages are delivered

by a given order to a process (even if this process crashes), they are delivered in

that order to all correct processes.

The new protocol [35] also supports the optimistic delivery of (tentative) total

order indications [9, 26]. Given that the order established by the (non-uniform) to-

tal order protocol is the same as the final uniform total order in most cases (these

two orders only differ when crashes occur at particular points in the protocol exe-

cution), this order can be provided to the consistency layer as a tentative ordering

information. The consistency protocols may optimistically perform some tasks

that are later committed when the final order is delivered.

Typically, the most efficient total order algorithms do not provide uniform de-

livery and assume the availability of a perfect failure detector. However, ensuring

perfect failure detection is very difficult without custom hardware, and as such the

algorithms may provide inconsistent results. On the other hand, algorithms that

assume an unreliable failure detector always provide consistent results but exhibit

higher costs. The most interesting feature of the protocol derived for COPLA is

that it combines the advantages of both approaches. On good periods, when the

system is stable and processes are not suspected, the algorithm operates as if a

perfect failure detector is assumed. Yet, the algorithm is indulgent, since it never

violates consistency, even in runs where processes are suspected.

3.6. THE CLIENT INTERFACE LIBRARY 35

3.6 The client interface library

The client interface library (CLIB) is the visible part of COPLA to application

programmers. It exposes an API, with which developers manipulate objects. The

API is organized about the basic concept of a session. A session is

• A set of persistent objects.

• A set of threads that manipulate those objects.

It is the CLIB’s responsibility to manage concurrent thread accesses to objects,

instantiation of object proxies, and generally translating user requests into calls to

the lower levels. These calls are either directly forwarded (for instance, a GOQL

query is directly forwarded to the UDS), or are a result of user’s requests (upon

commit, the CP layer will have to be called to confirm the request).

In order to maintain the system efficient, the CLIB also provides a transparent

caching mechanism. For example, if a user performs a query that returns one

thousand objects, and then iterates over the resulting collection, the CLIB will

retrieve objects in batches, and keep them in memory. So if the user backtracks

on a collection, no database query will be necessary.

3.7 Interaction among components

As shown above, COPLA is a modular system, made of several interacting com-

ponents. Here the interactions among them are detailed.

3.7.1 The COPLA transactional model

In COPLA, the execution of a transaction includes the following steps:

1. The programmer signals the system that a transaction is about to start.

36 CHAPTER 3. THE GLOBDATA ARCHITECTURE

2. The programmer makes a query to the database, using a subset of OQL.

This query returns a collection of objects.

3. The returned objects are manipulated by the programmer using the func-

tions exported by the client interface. These functions allow the application

to update the values of object’s attributes, and to read new objects through

object relations (object attributes that are references to other objects).

4. Steps 2-3 are repeated until the transaction is completed.

5. The programmer requests the system to commit the transaction.

3.7.2 Interaction with the consistency protocols

The CP-API interface basically exports two functions: a function that must be

called by the application every time new objects are read by a transaction, and a

function that must be called in order to commit the transaction.

The first function, that we callUDSAccess(), serves two main purposes: to

make sure that the local copies of the objects are up-to-date (some protocols may

not always maintain the most recent version of an object available locally); and

to extract the state of the objects by calling the UDS (the access to the underlying

database is not performed by the consistency protocol itself; it is a function of

the UDS component). It should be noted that in the actual implementation this

function is unfolded in a collection of similar functions covering different requests

(attribute read, relationship read, query, etc.). For clarity of exposition, we make

no distinction among these functions here.

The second function, calledcommit(), is used by the application to commit

the transaction. In response to this request the consistency protocols module has

to coordinate with its remote peers to serialize conflicting transactions and to de-

cide whether it is safe to commit the transaction or if it has to be aborted due to

3.8. SUMMARY 37

some conflict. In order to execute this phase, the consistency protocol requests the

UDS module to provide the list of all objects updated by the current transaction.

Additionally, the UDS also provides the consistency protocols with an opaque

structure containing the state of the updated objects. It is the responsibility of the

consistency protocol to propagate these updates to the remote nodes.

3.8 Summary

This chapter described the overall architecture of the COPLA system, detailing

each of its modular components, their roles within the system, and the general

way they work and interact with each other. The next chapter will present the

NonVoting consistency protocol algorithm for the COPLA middleware.

38 CHAPTER 3. THE GLOBDATA ARCHITECTURE

Chapter 4

The NonVoting Protocol For

GLOB DATA

In this chapter, a replication algorithm for the COPLA tool is described. First, a

generic strategy for exploiting group communication primitives for replication is

presented. Then, an overview of the algorithm is presented, within the architec-

tural description given in Chapter3. A more thorough explanation of the interface

between the different modules is given, and a complete exposition of the algo-

rithm, matching that interface, is made. The code that implements the algorithm

is reviewed. In the final section, an optimization to the algorithm is discussed, that

takes advantage of a particular capability present in the communication protocol

used in COPLA.

4.1 Architectural challenges

The GLOBDATA project is characterized by a unique combination of different

requirements that make the design of a consistency protocol a challenging task.

Namely, it aims to satisfy the following requirements:

39

40 CHAPTER 4. THE NONVOTING PROTOCOL FOR GLOBDATA

• Large-scale:the consistency protocols must support replication of objects

in a geographically dispersed system, in which the nodes communicate

through the Internet. This prevents the use of protocols that make used

of specific network properties (such as the low-latency or network-order

preservation properties of local-area networks [26]).

• RDBMS independence: a variety of commercial databases should be sup-

ported as the underlying data storage technology. This prevents the use of

solutions that require adaptations to the database kernel.

• Protocol interchangeability: COPLA must be flexible enough to adapt to

changing environment conditions, like the scale of the system, availabil-

ity of different communication facilities, and changes in the application’s

workload. Therefore it should allow the use of distinct consistency proto-

cols, that can perform differently in several scenarios.

• Object-orientation:even if COPLA maps objects into a relational model,

this operation must be isolated from the consistency protocols. In this way,

the consistency algorithms are not tied to any specific object representation.

4.2 Replication using atomic broadcast

The use of group communication primitives (atomic/virtual synchronous broad-

cast) as a base for the construction of replicated database systems reduces com-

plexity in respect to data consistency, fault tolerance and lock management. It

also provides the system with a set of semantically strong primitives, which allow

for simple implementations of strong consistency models [19]. Still, within group

communication there are several possible approaches, each offering different se-

mantics and levels of performance.

4.2. REPLICATION USING ATOMIC BROADCAST 41

A transaction system must honor the ACID properties: Atomicity, Consis-

tency, Isolation and Durability. The replication of the database poses particular

problems to the implementation of each of the above properties. Below is de-

scribed how the algorithm honors those properties within the COPLA system using

an atomic broadcast primitive.

To satisfy the atomicity property, one must extend to the different hosts the

requirement that, in spite of failures, either all of the operations in a transaction

are performed or none of them are. For each transaction COPLA executes the

sequence of operations in the scope of a transaction local to the delegate server

(the host mediating the transaction between the client and the group of database

servers). When the transaction attempts to commit, the set of operations to be

performed is broadcast in a single message that cannot be partially delivered. The

responsibility of ensuring the atomicity of the transaction at each host is delegated

to the local transaction server.

The consistency property states that the execution of interleaved transactions

is equivalent to a serial execution of the transactions in some order [3]. When

using a distributed database server the problem is extended to the need of ordering

transactions executing concurrently on different servers. The proposed algorithm

serializes transactions by using total order protocols that ensure the delivery of

all messages in the same order to every participant. It will rely on a total order

uniform delivery protocol that guarantees ordered delivery even in the presence of

failures of some participants.

Isolation of operations to concurrent transactions is ensured locally by keep-

ing the set of database updates in memory, private to each transaction. To the

remaining hosts this property is straightforward: remote hosts are not aware of

uncommitted transactions.

Durability is locally provided by the transaction database server used by the

42 CHAPTER 4. THE NONVOTING PROTOCOL FOR GLOBDATA

system. When one of the hosts recovers from a crash it will synchronize its state

with the remaining to ensure that he will learn of every committed transaction.

4.3 Replication strategies

Using, as in the previous chapter, the classification of database replication strate-

gies introduced in [37], the strong consistency protocol for COPLA that is to be

presented can be classified as belonging to the “update everywhere constant in-

teraction” class. It is “update everywhere” because it performs the updates to the

data items in all replicas of the system. This approach was chosen because it is

easier to deal with failures (since all nodes maintain their own copy of the data)

and does not create bottleneck points like the primary copy approach. They are

“constant interaction” because the number of messages exchanged by transaction

is fixed, independently of the number of operations in the transaction. Given that

the cost of communication in most GLOBDATA configurations is expected to be

high, this approach is much more efficient than a linear interaction approach. The

protocol described below explores one option of the third degree of freedom: the

way transactions terminate (voting or non-voting).

4.4 The Non-Voting Protocol

4.4.1 Description

This protocol, initially described in [31, 30], is a modification of the one described

in [24], altered to use a version scheme for concurrency control [3], and adapted

to the COPLA transactional model.

The protocol uses, for each object, a version number. This version number

is maintained in a consistency table, which is stored in persistent storage, and is

4.4. THE NON-VOTING PROTOCOL 43

updated in the context of the same transaction that alters data (i.e., the version

number is updated only if the transaction commits).

When an object is created, its version number is set to zero. Each time a

transaction updates an object, and that transaction commits, the object’s version

number is incremented by one. This mechanism keeps version numbers synchro-

nized across replicas, since the total order ensured by atomic broadcast causes all

replicas to process transactions in the same order.

When enforcing serializability [3], two kinds of conflicts must be considered

by the protocol: read/write conflicts and write/write conflicts. Read/write conflicts

occur when one transactions reads an object, and another concurrent transactions

writes on that same object. Write/write conflicts occur when two concurrent trans-

actions write on the same object. In GLOBDATA , all objects are read before they

are written (as shown above in the COPLA transactional model), so a write/write

conflict is also a read/write conflict. Considering these definitions, in the ver-

sion number concurrency control scheme, conflicting transactions are defined as

follows:

Two transactionst andt ′ conflict if t ′ has read an objecto with version

vo and whent ′ is about to commit, objecto’s version number in the

local database,v′o, is higher thanvo.

That means thatt ′must be aborted, because it has read data that was later mod-

ified (by a transactiont that modifiedo and committed beforet ′, thus increasing

o’s version number).

The general outline of the non-voting algorithm is now presented:

1. All the transaction’s operations are executed locally on the node where the

transaction was initiated (this node is called the delegate node).

44 CHAPTER 4. THE NONVOTING PROTOCOL FOR GLOBDATA

2. When the application requests a commit, the list of objects read by the trans-

action and its version numbers, the list of objects written by the transaction,

and the transactions modifications to written objects is sent to all nodes us-

ing the atomic broadcast primitive.

3. When a transaction is delivered by the atomic broadcast protocol, all servers

verify if the received transaction does not conflict with previously commit-

ted transactions. There is no conflict if the versions of the objects read by

the arriving transaction are greater or equal to the versions of those objects

present in the local database. If no conflict is detected, then the transaction

is committed, otherwise it is aborted. Since this procedure is deterministic

and all nodes, including the delegate node, receive transactions by the same

order, all nodes reach the same decision about the outcome of the transac-

tion. The delegate node can now inform the client application about the

final outcome of the transaction.

Note that the last step is executed byall nodes, including the one that initiated

the transaction.

Depicted in Figure4.1 is a more detailed description of the algorithm. It is di-

vided in two functions, corresponding to the interface previously described. Both

functions accept the parametert, the transaction to act upon.UDSAccess() also

accepts a parameter,l , which is the list of objects thatt has read from the UDS.

Note that step 3 of thecommit() function is executed by all nodes, including the

delegate node.

The algorithm uses the order given by atomic broadcast for serializing conflict-

ing transactions. The decision is taken in each node independently, but all nodes

will reach the same decision, since it depends solely on the order of message de-

livery (which is guaranteed to be consistent at all replicas by the atomic broadcast

4.4. THE NON-VOTING PROTOCOL 45

• UDSAccess(t,l):

1. Add the list l of objects to list of objects read by transaction t.

• commit(t):

1. Obtain from the UDS the list of objects read (RSt) and its version numbers,
and the list of objects written (WSt) by this transaction.

2. Send < t,RSt ,WSt > through the atomic broadcast primitive.

3. When the message containing t is delivered by the atomic broadcast:

(a) If t conflicts with committed transactions
i. Abort.

(b) else (consistent transaction)
i. Abort all transactions conflicting with t

ii. Commit the transaction.

Figure 4.1: Non-voting protocol

protocol). When a commit is decided, the version number of the objects written

by this transaction are incremented, and the UDS transaction is committed.

Note that to improve performance, local running transactions that conflict with

a consistent transaction are aborted, in step 3(b)i. There is a conflict when the

running transaction has read objects that the arriving transaction has written. This

would cause the transaction to carry old versions of read objects on its read set,

which would cause it to be aborted later on in step 3(a). This way an atomic

broadcast message is spared.1

Aborting a transaction does not involve any special step. In this case, the

commit() function is never called, and all that has to be done is to release the local

resources associated with that transaction.

1This optimization may not be effective in all cases : if the running transaction has already sent
its message, then there is no saving, the transaction is merely aborted sooner. When its message
arrives, it will be discarded.

46 CHAPTER 4. THE NONVOTING PROTOCOL FOR GLOBDATA

4.4.2 Using versions for concurrency control

As stated above, the presented algorithm is a modification of a previous work [24].

The main modification consisted in replacing the original lock-based concurrency

control by a version number scheme.

This modification is important, and was made due to a requirement of the

original protocol (hereby referred to as DBSM). Suppose the following scenario:

two transactions,ta andtb, which conflict with each other, are executing on the

same node. Then, bothta andtb request commit. The atomic broadcast protocol

will take both messages, and deliverta beforetb.

In DBSM, tb would hold write locks over objects that would be overwritten by

ta. However,tb could not simply be aborted, since its commit request had already

been sent. We would then have two possible scenarios:

1. If tb would latter commit, then its writes would overwriteta’s writes, and

thereforeta would not need to request those locks, or process the corre-

sponding updates. This reasoning is known as the Thomas Write Rule [34].

2. If tb would latter abort, then the database would have to be restored to a state

without tb, for example by applyingta’s redo logs to the database.

While scenario1 would pose no problems to the COPLA architecture, sce-

nario2 would imply the existence of a mechanism that would allow a committed

transaction to be undone. This would pose a severe problem, because SQL does

not have such a construct, and usually databases only provide this functionality

through an administrative interface.2 As such, the algorithm could not be directly

transposed to COPLA.

The choice of using a versioning scheme solves this problem. Since a transac-

tion’s updates are not applied until their order is determined by atomic broadcast,
2Since DBSM was designed to be integrated in an existing database kernel, this would not be a

problem, because regular RDBMS have this functionality internally, for crash-recovery purposes.

4.5. IMPLEMENTATION 47

there is no need to undo any committed changes caused by a subsequent abort of

a running transaction.

4.4.3 Objects and classes

As stated in the description of COPLA, the system deals with data organized in

objects, which are instances of a given class. So far in the description of this

protocol, we have considered objects as isolated entities. However, in order to

correctly enforce transaction serializability, the notion of class must also be intro-

duced in the concurrency control mechanism used by the consistency protocol.

To do this, each class must also have a version number associated with it. The

rules that establish the inclusion of these version numbers in the transactions’ read

and write sets are the following:

• Whenever an instance of class X is read by a transactiont that searches the

entire class, that is considered a read of class X (in addition to a read of that

particular instance), and X’s OID and version number is included inRSt .

• Whenever an instance of class X is created, written or deleted by a transac-

tion t, this is considered a write in class X, and X’s version number will be

increased whent commits.

Note that the enforcement of the read rule is made in cooperation with the UDS

module – the UDS will interpret the query and will include in the resulting read

set either specific objects or the whole class, as appropriate.

4.5 Implementation

As described in Chapter3, an interface was defined for the COPLA consistency

protocol (CP) module. This would enable different protocols to be used, thus

48 CHAPTER 4. THE NONVOTING PROTOCOL FOR GLOBDATA

copla.api.cpapi

«interface»
CoplaManagerServer

+connectFromProtcol(...)
+stop()

«interface»
ProtocolCommonAccess

+repositoryAccessed(rm:RepositoryMediator)
+...()

«interface»
FCULPERMediator

+updateVersions(...)
+getObjectVersions(...)
+...()

«interface»
ITIPERMediator

+createObjectsInfo(...)
+getObjectOwner(...)
+getObjectsVersion()
+...()

«interface»
ITISPERMediator

+createSessionInfo(...)
+getSessionInfo(...)
+...()

«interface»
RepositoryMediator

+setPeer(rtm:RepositoryTransactionalManager)
+newSesssionCoordinator(): SessionCoordinator
+getRepositoryName(): String

«interface»
ProtocolSession

+transactionMode()
+newObject(o:String): String
+nextOIDsAccess(...)
+nextQueryAccess(query:String)
+nextObjectToDelete(...)
+...()
+commit()
+rollBack()

«interface»
RepositoryTransactionalManager

+newSession(sc:SessionCoordinator)

«interface»
SessionCoordinator

+getTransactionUpdate(): byte[]
+commitUDS()
+abortUDS()
+getPERMediator()
+whatToUpdate(query:String): String[]
+applyUpdates(transUpdate:byte[],writeSet:String[])
+getTransactionReport(): TransactionReport
+abortSession()

SessionInfo
+info: int[]
+readSet: ReadSet
+writeSet: String[]
+readSetVersions: int[]
+writeSetVersions: int[]

informs

informs

informs

Figure 4.2: CP-API interface

giving greater flexibility.

Obviously, this interface will impact upon the algorithms detailed design,

since it must conform to it. Below both the description of the interface, and the

adapted design of the algorithm are described.

4.5.1 The CP-API interface

Figure4.2presents the complete CP-API interface. This interface is composed of

three major parts:

1. The COPLA server interface part, composed by theCoplaManagerServer,

RepositoryMediator andSessionCoordinator interfaces. This part is the in-

terface exposed to the consistency protocols for working with the remainder

4.5. IMPLEMENTATION 49

of the COPLA server.

2. The protocol interface part, composed be the three interfaces surrounded by

a border in the top left of the figure,ProtocolCommonAccess, Reposito-

ryTransactionalManager andProtocolSession. Each consistency protocol

must implement these three interfaces.

3. The persistence interface (PER-API) part, composed of the remaining classes

in the diagram. This interface is divided in two parts (each surrounded by

a border), that correspond to interfaces specified by the two teams develop-

ing consistency protocols for COPLA, FCUL (bottom left)and ITI (bottom

right). The protocol described in this thesis uses only the FCUL interface.

This interface, implemented by the UDS module, provides functions for

storing metadata in a persistent way, and coordinated with COPLA transac-

tions.

The server interface is divided in three classes:

CoplaManagerServer This class contains two calls: one to enable a CP to open

a repository connection (this is required when a node that has no clients has

to apply remote updates), and a call to stop the node (emergency shutdown,

for example).

RepositoryMediator This interface is usually passed to the consistency protocol

at initialization time. It represents a repository. It contains three calls:set-

Peer(), to set its peer class in the consistency protocol (the class over which

it will make repository-related operations to the CP),newSessionCoordi-

nator(), to allow the CP to create an independentSessionCoordinator, and

getRepositoryName(), that returns the repository’s name.

50 CHAPTER 4. THE NONVOTING PROTOCOL FOR GLOBDATA

SessionCoordinator This interface represents an opened session in a repository,

at the COPLA manager level. It is usually associated with a client session

(that interfaces with client applications), aProtocolSession, that represents

a session within a CP, and an UDS transaction, that contains methods for

manipulating the persistent objects. The first two associations may not be

present: the CP may create anindependentSessioncoordinator for apply-

ing updates from a remote node, for example. Also, it may also be asso-

ciated with aPERMediator object, that provides operations over persistent

metadata. Those operations will be performed in the context of the session

represented by theSessionCoordinator.

The following classes constitute the interface that each CP must implement.

ProtocolCommonAccessThe interface for starting communications between the

common COPLA code and the integrated consistency protocol.repository-

Accessed() is called by the common code to inform the protocol that an

user application is going to work with a given repository.

RepositoryTransactionalManager Is in charge of coordinating the work on a

given repository. Its interface to the common code side offers the method

newSession() so the protocol can be told of session openings on the repos-

itory represented.

ProtocolSessionThe interface to inform the protocol of actions the user appli-

cation want to perform on the current session. This way the protocol can

make a decision on either allow the action to proceed, delay it while some

objects are suitably updated or deny the action. For instance:

• nextOIDsAccess() is used to inform the protocol of a set of objects

that are to be accessed.

4.5. IMPLEMENTATION 51

• nextQueryAccess() tells the protocol the next query that is going to

be performed. The protocol should check if all objects involved to

perform the query are up to date on the local UDS.

• The commit() method asks the protocol whether the job done by the

session can be committed. Some relevant actions implied by the com-

mitting are driven by the protocol: calling thecommitUDS() method

of theSessionCoordinator class to tell the UDS to commit the transac-

tion as well as collecting from it the “transaction report” so its effects

can be replicated on other nodes.

The PER-API interface consists of a single class,FCULPERMediator, that

contains two relevant functions:

• The updateVersions method increments the version numbers of the given

objects.

• The getObjectVersions function returns the version numbers of the given

objects.

As stated above, aPERMediator object (whichFCULPERMediator subclasses)

is always associated with an opened session, represented by aSessionCoordina-

tor instance. The operations it provides will be executed within the context of that

session, and will thus only be applied when the session commits.

4.5.2 Class and function structure

The implementation code is divided in two main parts: one part implements the

functions defined in the CP-API. The other consists in an independent thread that

listens to incoming messages. The class structure is shown in Figure4.3

52 CHAPTER 4. THE NONVOTING PROTOCOL FOR GLOBDATA

RepositoryTransactionalManager

ProtocolSession
0..*

ProtocolCommonAccess

1..*

Task

SessionList

TransactionMessage

OIDVersion

VersionComparator

creates

Generator

Figure 4.3: Class structure of the protocol implementation

The first part (above the dashed line) is composed of six classes. Three of them

(RepositoryTransactionalManager, ProtocolCommonAccess andProtocolSession)

provide the implementation of the protocol part of the CP-API (see Figure4.2).

The other three are auxiliary classes, they will be described below.

The second part is composed by three classes. TheTask class contains the code

to process incoming messages, and the other two classes constitute the messages

themselves.

Each class and its functions will now be described in greater detail.

ProtocolCommonAccessThis class is the entry point for the protocol code. It

contains functions to initialize and stop the protocol, and a function that

is called by the COPLA common code to inform the protocol that a given

repository has been accessed.

RepositoryTransactionalManager This is the main class of the protocol. Its

methods are:

4.5. IMPLEMENTATION 53

newSession()This function is called by the common code to create a new

session.

commitSession()Attempts to commit a given session.

abortSession()Aborts a given session.

checkTransactionConsistency()This function checks whether a given trans-

action’s read set is consistent, i.e., if that transaction has not read data

that was modified.

abortConflictingTransactions() This function aborts running transactions

whose read sets intersect the given write set. The actual work is per-

formed by the corresponding function inSessionList.

newView() Called byTask to inform the protocol that there is a member-

ship change of the server group. A view change may happen on a node

failure, node join or network partition.

SessionList This class holds all the running sessions.

addSession()Adds a session to the list.

removeSession()Removes a session from the list.

getSession()Returns a specific session.

abortConflictingTransactions() This function aborts all transactions whose

read sets intersect the given write set.

Generator This class is responsible for creating unique session identifiers and

unique object identifiers.

nextSID() Generates a unique SID (Session IDentifier).

nextOID() Generates a unique OID (Object IDentifier).

54 CHAPTER 4. THE NONVOTING PROTOCOL FOR GLOBDATA

ProtocolSessionThis class represents a transaction at the consistency protocol

level.

transactionMode(), checkoutMode()These methods switch the operating

mode for this transaction. Since the FCUL protocols always operate

in transaction mode, these methods do nothing.

nextOIDAccess() / nextQueryAccess() / nextMOAAccess() / nextMRAc-

cess() / nextMLAAccess()Verifies which OIDs are going to be ac-

cessed and add them to the read set of the transaction.

nextURChange(), nextUOAChange()Verifies which OIDs are going to

be changed and add them to the read set of the transaction.

newObject() Adds the created object to the read and write set of the trans-

action.

nextObjectToDelete() Adds the object to be deleted to the read and write

set of this transaction.

nextRemoveAllOIDs() Adds the given OIDs to the list of deleted objects.

This list must be maintained because of cascading deletes.

getState() Returns the state of this transaction (aborted, committed or run-

ning).

setState() Sets the state of this transaction. Changing the transaction from

running to committed or aborted commits or aborts the associated

UDS transaction.

intersects() Checks if the given write set intersects this transaction’s read

set.

commit() Attempts to commit this transaction.

abort() Aborts this transaction.

4.5. IMPLEMENTATION 55

(Common COPLA code) ProtocolSessionRepositoryTransactionalManager

newSession()
«create»

Figure 4.4: Execution of a newSession request

close() Frees any resources associated with this transaction.

VersionComparator This class contains a single function,lessThan() that checks

whether a version is older than another, taking in to account version number

wrap-around.

Task This class contains the code that runs in a separate thread and processes

incoming messages.

run() Main message processing loop.

send() Sends a message through atomic broadcast.

In order to clarify the descriptions above, we show some common executions

with interaction diagrams.

In Figure4.4, the execution of anewSession request is shown.

The execution of a commit request is shown in Figure4.5. The COPLA man-

ager first makes a commit request toProtocolSession, which in its turn forwards

it to RepositoryTransactionalManager. This object is responsible for construct-

ing a transaction message to be sent to the network. To do so, it first obtains

the versions of the objects involved in the transaction, through thegetObjectVer-

sions() method. Then it constructs the message and forwards it to theTask object,

56 CHAPTER 4. THE NONVOTING PROTOCOL FOR GLOBDATA

(Common COPLA code) ProtocolSession RepositoryTransactionalManager FCULPERMediator

commit()
commitTransaction() getObjectVersions()

Task

send()

unblock()

(blocks until
Task processes

this transaction’s
message)

truetrue

Figure 4.5: Execution of a commit request

and blocks waiting for it to be ordered by the atomic broadcast protocol. The

Task object is responsible for sending the message to the total order protocol, and

to unblock the correct session when a message is delivered by the communication

module. WhenRepositoryTransactionalManager is unblocked, it will verify if the

transaction can be committed or not, through thecheckTransactionConsistency()

method, and if so, commit the transaction in the UDS and return atrue response

to the common COPLA code.

4.5.3 Detailed algorithm

In this section, the detailed pseudo-code of key algorithm functions will be ex-

amined, to illustrate the choices presented above. First, let us examine a more

refined description of the protocol, in figure4.6. Here we can already see that

the algorithm must be separated in two: one thread runs independently, receiv-

ing incoming transaction messages, and the other functions run within the main

application thread. This “unfolded” version fits better within the class structure

presented in the section above. The main thread consist of procedures that are

called by the CLIB at various stages of a session: theinitialize method is called

when a session is created, theUDSAccess method whenever the session reads ob-

jects (listed in the parameterl), and thecommit method when a session requests

4.5. IMPLEMENTATION 57

a commit. All these methods receive a parameter,t, that indicates the session to

act upon. The Task thread is simply in charge of processing incoming messages,

and validating them. The pseudo-code presented in the figure uses two auxiliary

methods:udsCommit andudsAbort instruct the UDS layer to commit or abort a

transaction.

Reading and checking versions Here a small, but nevertheless important im-

plementation detail must be considered. Like it was described above, accesses

to the database, whether objects or persistent metadata, must be done through a

SessionCoordinator. Normally, aSessionCoordinator is associated with aPro-

tocolSession. However, the protocol sometimes requires access to the database

outsidethe context of any user transactions. To that effect, it uses an independent

SessionCoordinator (ISC) to perform these accesses.

With the above in mind, let us examine the source for the three functions

that cooperate to perform the commit function, corresponding to the isConsistent,

abortConflicting and commit functions in figure4.6. The function headers make

it clear which one is which.

1 /∗∗
2 ∗ Checks if the transaction is consistent , i .e ., it has not read stale
3 ∗ data.
4 ∗
5 ∗ @param rs the read set of the transaction .
6 ∗ @return true if the transaction is consistent , false otherwhise .
7 ∗/
8 boolean checkTransactionConsistency (OID_Version[] rs) {
9 boolean ret = true ;

10

11 try {
12 String [] oids = new String[rs . length];
13 for (int i = 0; i < rs . length ; i++)
14 oids [i] = rs [i]. oid ;
15

16 OID_Version[] lv = null ;

58 CHAPTER 4. THE NONVOTING PROTOCOL FOR GLOBDATA

Main thread

procedure initialize(t)
preadt ← /0
lvt ← /0

procedure UDSAccess(t,l)
preadt ← preadt ∪ l

function isConsistent(t, rst)
lvt ← getVersions(rst)
for each < o,v > in rst and< o,v′ > in lvt

if v < v′

return false
return true

procedure abortConflicting(t,ws)
for each running transactionrt

if preadrt ∩ws 6= /0
udsAbort(rt)

procedure commit(t)
rst ← getReadSet(t)
wst ← getWriteSet(t)
if wst = /0

if isConsistent(t, rst)
udsCommit(t)

else
udsAbort(t)

else
ABSend(< t, rst ,wst >)

Task thread

Upon ABReceive(< t, rst ,wst >):
if isConsistent(t, rst)

abortConflicting(t,wst)
udsCommit(t)

else
udsAbort(t)

Figure 4.6: Non-voting protocol (detail)

4.5. IMPLEMENTATION 59

17 synchronized(iscLock) {
18 lv = indepFpm.getObjectVersions(oids) ;
19

20 for (int i = 0; i < rs . length ; i++) {
21 int j ;
22 for (j = 0; ! lv [j]. oid . equals (rs [i]. oid) ; j++);
23

24 if (VersionCompare.lessThan(rs [i]. version , lv [j]. version)) {
25 ret = false;
26 break;
27 }
28 }
29

30 indepSessionCoord.commitUDS();
31 }
32

33 return ret ;
34 } catch (NoSuchOIDException ex) {
35 error ("checkTransactionConsistency: bad oid");
36 ex. printStackTrace () ;
37 Util . fatalCondition () ;
38 } catch (PersistentLayerException ex) {
39 Util . fatalCondition () ;
40 }
41

42 return false ;
43 }

The above function is very straightforward: it first obtains from the database

the versions it currently owns for the requested objects. This involves creating a

list of OIDs to pass to the database (lines 12–14), and then performing the call

(line 18). The obtained versions are then compared to the versions present in

the given read set (lines 20–28), using theVersionComparator class. The only

difficulty here is that the two lists might not be ordered the same way, OID wise,

hence the need for two nested “for” loops. Finally, the ISC transaction is ended.

This procedure is done inside asynchronized block, because it makes use of

the ISC. Since there is only one independent coordinator, not synchronizing the

access to it would mean that operations from concurrently executing transactions

60 CHAPTER 4. THE NONVOTING PROTOCOL FOR GLOBDATA

would be intermixed in the same ISC transaction.

1 /∗∗
2 ∗ Aborts transactions that conflict with the given write set .
3 ∗
4 ∗ @param ws the write set .
5 ∗ @param sid the session id of the incoming transaction .
6 ∗/
7 synchronized void abortConflictingTransactions (String [] ws, SID sid) {
8 for (Enumeration i = htable .elements () ; i .hasMoreElements();) {
9 ProtocolSession s = (ProtocolSession) i .nextElement() ;

10 if (s . getState () == ProtocolSession .EXECUTING) {
11 if (! s . sid . equals (sid) && s. intersects (ws)) {
12 s . setState (ProtocolSession .ABORTED);
13 }
14 }
15 }
16 }

This function is a direct translation from pseudo-code: it runs through the

session list, checking if each executing session’s read set intersects the given write

set. If so, the offending session is aborted. Theintersects function called on line

11 is a simple check against the session’s read set.

1 /∗∗
2 ∗ Commits a session .
3 ∗
4 ∗ @param session the session to commit.
5 ∗ @param tr the session ’s transaction report .
6 ∗
7 ∗ @return true if the session commited ok , false otherwise .
8 ∗/
9 booleancommitTransaction(ProtocolSession session , TransactionReport tr) {

10 int state =−1;
11

12 synchronized(session) {
13 // check if this session was aborted while it was executing
14 state = session . getState ()
15 }
16

17 if (state == ProtocolSession .ABORTED) {
18 SID oldSid = resetSession (session) ;

4.5. IMPLEMENTATION 61

19 return false ;
20 }
21

22 synchronized(viewLock) {
23 if (myState == RECOVER) {
24 session . setState (ProtocolSession .ABORTED);
25 session . rollBack () ;
26 resetSession (session) ;
27 return false ;
28 }
29 }
30

31 synchronized(session) {
32 if ((state = session . getState ()) == ProtocolSession .ABORTED) {
33 // abort processing
34 } else {
35 try {
36 OID_Version[] rs = buildRsVersions (tr . readSet , session . reads) ;
37

38 byte [] tu = null ;
39 tu = session . getTransactionUpdate () ;
40

41 if (tr . writeSet . length > 0) { // read−write transaction
42 String src =null ;
43 synchronized(viewLock) {
44 src = viewState .view[localState .my_rank]. toString () ;
45 }
46

47 /∗ Processing for finding cascaded deletes : if an object
48 ∗ is in WS but not in RS or Created then it is a
49 ∗ cascaded delete .
50 ∗/
51 booleanfound = false;
52 for (int i = 0; i < tr . writeSet . length ; i++) {
53 found = false;
54 for (int j = 0; j < rs . length ; j++) {
55 if (rs [j]. oid . equals (tr . writeSet [i])) {
56 found = true ;
57 break;
58 }
59 }
60 if (! found) {
61 found = session . createdObjs . contains (tr . writeSet [i]) ;

62 CHAPTER 4. THE NONVOTING PROTOCOL FOR GLOBDATA

62 }
63 if (! found) {
64 session . deletedObjs .add(tr . writeSet [i]) ;
65 }
66 }
67

68 String [] sco = (String []) session . createdObjs . toArray(new String
[0]) ;

69 String [] sdo = (String []) session . deletedObjs . toArray(new String
[0]) ;

70 TransactionMessage tm =
71 newTransactionMessage(session . sid , rs , tr . writeSet , tu ,sco,sdo,

src) ;
72 TxMessage msg =newTxMessage(tm.munchTrans());
73 task .send(msg);
74 } else { /∗ read−only transaction ∗/
75 if (checkTransactionConsistency (rs)) {
76 session . setState (ProtocolSession .COMMITED);
77 } else {
78 session . setState (ProtocolSession .ABORTED);
79 }
80 }
81

82 // wait for the state to be updated
83 while ((state = session . getState ()) == ProtocolSession .

EXECUTING) {
84 session . wait () ;
85 }
86 } catch (PersistentLayerException ex) {
87 Util . fatalCondition () ;
88 } catch (TransactionUpdateException ex) {
89 Util . fatalCondition () ;
90 } catch (InterruptedException ex) {
91 ex. printStackTrace () ;
92 error ("commitTransaction: wait interrupted");
93 }
94 }
95 }
96

97 SID oldSid = resetSession (session) ;
98

99 if (state == ProtocolSession .COMMITED) {
100 return true ;

4.5. IMPLEMENTATION 63

101 } else {
102 return false ;
103 }
104 }

This is one of the most complex functions, that implements the commit pro-

cedure of a session. A thing to note is that access to the actual session data must

be made under a lock on the session itself. This must be done because an arriving

message may abort the very session being processed. The same reasoning applies

to accessing the group view information; a view change can occur at any time the

function is executing.

The function begins by checking if the session was already aborted (lines 12–

20), or if the node is in a recover state (lines 22–29). Then the main commit

procedure begins, on line 31, again with an abort check (because the lock on the

session object had been released).

First, the versions for each object read by the transaction are collected, in line

36. This procedure simply performs the union of both sets passed to it. The first

is the set passed to the commit function, the other is the reads collected during

transaction execution.3 Then, the transactions updates are retrieved (line 39). The

procedure is then split in two: like was stated above, read-only transactions can

be processed more efficiently. The handling of read-write transactions is made in

lines 42–73.

First, the identity of the node is determined (42–45). Then, some processing

must be done for finding cascaded deletes (lines 47–66). Cascaded deletes occur

when an object that references other objects is deleted. If the referenced objects

do not have any other references pointing to them they are deleted as well (i.e., the

first delete provoked acascadeof deletions). These cascaded deletes are added

to the session’s write set (tr.writeSet in the code), but might not be included in

3 In practice, in the current COPLA implementation these sets are exactly the same. In theory,
however, the first set might contain additional reads, because of class relationships, for example.

64 CHAPTER 4. THE NONVOTING PROTOCOL FOR GLOBDATA

the session’s read set, because they might not have been read by the session at

all. This part then finishes by constructing the transaction message and sending it

(lines 68–73).

Lines 75–79 contain the handling for read-only transactions, which is much

simpler: all that is required is to verify if the transaction has not read stale data

(line 75), and commit or abort accordingly.

The function will then suspend the current thread until the system reaches a

decision about the transaction (this will be done within theTask code, explained

below). Note that this test continues immediately in case the transaction was read-

only.

In the end, the function resets the session data (this is done to mirror the be-

havior of user sessions, that can be used continuously as well), and returns the

appropriate value.

1 public void run () {
2 while (true) {
3 CommAPIMessage msg =null ;
4

5 msg = commApi.receive();
6 if (msginstanceof SendToAll) {
7 if (msginstanceof TxMessage) {
8 TransactionMessage tm =
9 TransactionMessage.deMunchTrans(((TxMessage)msg).getData());

10 if (recover) {
11 recMsgQueue.addLast(tm);
12 } else {
13 handleTxMessage(tm);
14 }
15 }
16 } else if (msginstanceof SendTo) {
17 if (msginstanceof LogRequestMessage) {
18 handleLogRequest((LogRequestMessage) msg);
19 } else if (msginstanceof LogReplyMessage) {
20 handleLogReply((LogReplyMessage) msg);
21 }
22 } else if (msginstanceof CommAPIView) {

4.5. IMPLEMENTATION 65

23 // new view
24 blocked = false;
25 while (! msgQueue.isEmpty())
26 commApi.send((CommAPIMessage) msgQueue.removeFirst());
27

28 rtm.newView((CommAPIView) msg);
29 } else if (msginstanceof CommAPIBlockOk) {
30 synchronized(blockLock) {
31 blocked = true ;
32 commApi.send(msg);
33 }
34 }
35 }
36 }

As described above in the implementation’s architecture, theTask class is a

thread, whose main loop continuously reads and processes incoming messages.

Above the source code for this loop is presented.

This loop can receive four types of messages. Transaction messages are han-

dled by another function, shown below. If the system is in recover mode, these

messages are queued for later processing. Point-to-point messages are used by the

recovery procedure. The other two message types are views and block requests.

View messages inform the system that group membership changed.

Block messages are “fake” messages (i.e., no actual transmission over the net-

work is performed), and a requirement of the view synchrony system. The are

generated when a view change is about to occur, and they establish a basic con-

tract between the communication system and its users.4 When the user receives

this message, it will send any pending messages it has. Then, it will send the

received block message, and will refrain from sending any more messages until

it receives a view change message (during this period the user may receive other

messages). This allows the communication system to stabilize, and fulfill the view

synchrony requirements. This is the reason for the code in lines 25–26: messages

4Here, the communication system user is the CP layer.

66 CHAPTER 4. THE NONVOTING PROTOCOL FOR GLOBDATA

to be sent while the system is blocked are placed in a queue, that is flushed when

the system unblocks.

1 /∗∗
2 ∗ Handles transaction messages.
3 ∗ @param msg the received message.
4 ∗/
5 private void handleTxMessage(TransactionMessage tm) {
6 // check for created objects on remote tx .
7 OID_Version[] rsToCheck =null ;
8 if (tm.createdObjs !=null && tm.createdObjs. length != 0
9 && (!rtm.isLocal (tm.sid))) {

10 // a remote tx has created objects , must add entries
11 // in version table
12 rsToCheck = splitSet (tm.readSet , tm.createdObjs) ;
13 } else {
14 rsToCheck = tm.readSet ;
15 }
16

17 synchronized(currWrites) {
18 for (int i = 0; i < tm. writeSet . length ; i++) {
19 currWrites .add(tm. writeSet [i]) ;
20 }
21 }
22

23 if (rtm. checkTransactionConsistency (rsToCheck)) {
24 rtm. abortConflictingTransactions (tm. writeSet , tm.sid) ;
25 // notify transactions , so that aborted transactions wake up
26 // and free the UDS tx.
27 synchronized(currWrites) {
28 currWrites . notifyAll () ;
29 }
30 if (rtm. isLocal (tm.sid)) {
31 // it ’s a local transaction , let ’s commit it .
32

33 // write the metadata on persistent storage
34 ProtocolSession s = rtm. sessionList . getSession (tm.sid) ;
35 if (s != null) {
36 // update versions
37 String [] delob = null ;
38 String [] wsToUpdate =null ;
39 if (s . deletedObjs . size () != 0) {
40 delob = (String []) s . deletedObjs .

4.5. IMPLEMENTATION 67

41 toArray(new String [0]) ;
42 }
43 if (s . createdObjs . size () != 0) {
44 wsToUpdate = splitWriteSet (tm. writeSet ,
45 tm.createdObjs) ;
46 } else {
47 wsToUpdate = tm.writeSet ;
48 }
49 Util . updateVersions (s . sc , wsToUpdate, delob,"");
50 addLogEntry(s.sc , tm.sid , curr_seq_num,
51 tm.pObjs , tm. writeSet) ;
52 s . setState (ProtocolSession .COMMITED);
53 curr_seq_num++;
54 }
55 } else {
56 // it ’s a transaction from another node
57 writeInUDS(tm.sid , curr_seq_num, tm. writeSet ,
58 tm.createdObjs , tm.deletedObjs ,
59 tm.pObjs);
60 curr_seq_num++;
61 }
62 } else {
63 // inconsistent transaction
64 if (rtm. isLocal (tm.sid)) {
65 ProtocolSession s = rtm. sessionList . getSession (tm.sid) ;
66 if (s != null) {
67 s . setState (ProtocolSession .ABORTED);
68 } // if s is null then a transaction that arrived
69 // before has already aborted s
70 } // nothing to be done for a remote aborting transaction
71 }
72 synchronized(currWrites) {
73 currWrites . clear () ;
74 currWrites . notifyAll () ;
75 }
76 }

This function handles incoming transaction messages, and implements the sec-

ond half of the commit procedure. It begins by separating from the read set any

objects the incoming transaction might have created (lines 7–15). They are in-

cluded in the read set, but cannot be passed to the consistency check (on line 23),

68 CHAPTER 4. THE NONVOTING PROTOCOL FOR GLOBDATA

because versions for them do not exist in the database yet (since they were created

by this transaction, which has not committed yet).

The purpose of thecurrWrites array (lines 17–21, 27–29 and 72–75) will be

described furthed below, together with theaddReads code.

It then proceeds by checking if the transaction has read any stale data. If it

did, it will abort the transaction (exactly how will be examined further below). If

not, it will abort all conflicting transactions. Then the procedure splits in two, for

local and remote transactions.

For local transactions, it will write the version data to persistent storage (line

49), add an entry to the recovery log (50), and then commit the transaction (52).

Line 53 increments the recovery log sequence number. Note that this whole se-

quence may be skipped, in case there is no entry in the active session list for the

incoming transaction (lines 34–35). This means that a previous transaction has

aborted the current one, and as such the message is simply discarded.

For remote transactions, it will perform the same steps as the local case, except

that it will apply the transaction’s updates before committing. The process is done

outside this function simply to ease error handling.

Inconsistent transactions are handled on lines 62–71. For local transactions, it

will locate the correspondingProtocolSession object, and abort the session. For

remote transactions, the message is simply discarded.

1 /∗∗
2 ∗ Adds the specified objects to this session ’s read set .
3 ∗
4 ∗ @param objs the {@link OID pt. fcul .copla .manager.protocol .common.OID}s
5 ∗ to add to the read set .
6 ∗/
7 void addReads(String [] objs)throws AbortException {
8 LinkedList versToGet =newLinkedList() ;
9

10 // check if incoming tx is writing on our objects
11 synchronized(rtm. task . currWrites) {

4.5. IMPLEMENTATION 69

12 booleanhold = true ;
13 booleanfound = false;
14 while (hold) {
15 if (this . state == ABORTED) {
16 hold = false;
17 } else {
18 found = false;
19 for (int i = 0; i < objs . length ; i++) {
20 for (Iterator j = rtm. task . currWrites . iterator () ; j .hasNext() ;)

{
21 if (objs [i]. equals (((String) j . next ()))) {
22 found = true ;
23 break;
24 }
25 }
26 }
27 if (found) {
28 try {
29 rtm. task . currWrites . wait () ;
30 } catch (InterruptedException e) {
31 e. printStackTrace () ;
32 }
33 } else {
34 hold = false;
35 }
36 }
37 }
38

39 if (this . state == ABORTED) {
40 throw new AbortException();
41 }
42

43 synchronized(reads) {
44 for (int i = 0; i < objs . length ; i++) {
45 if (OID.quickIsClassId (objs [i])) {
46 if (reads . classIds .add(objs [i])) {
47 versToGet.add(objs [i]) ;
48 }
49 } else {
50 if (reads .setOfOIDs.add(objs[i])) {
51 versToGet.add(objs [i]) ;
52 }
53 }

70 CHAPTER 4. THE NONVOTING PROTOCOL FOR GLOBDATA

54 }
55 if (versToGet. size () != 0) {
56 try {
57 FCULPERMediator fpm =
58 (FCULPERMediator)this.sc.getPERMediator(ProtocolType.FCUL

);
59 OID_Version[] ov =
60 fpm.getObjectVersions ((String []) versToGet.toArray(new String

[0])) ;
61 for (int i = 0; i < ov. length ; i++) {
62 reads . versions .put(ov[i]. oid ,new Integer (ov[i]. version)) ;
63 }
64 } catch (PersistentLayerException e) {
65 e. printStackTrace () ;
66 Util . fatalCondition () ;
67 } catch (NoSuchOIDException e) {
68 error ("addReads: no such oid");
69 e. printStackTrace () ;
70 Util . fatalCondition () ;
71 }
72 }
73 }
74 }
75 }

Above we can see theaddReads code. This function is called whenever the

protocol is informed that a session will read objects. In principle, this function

would be very simple: obtain the current version of the objects to be read, and add

the OIDs and corresponding versions to the read set of the session.

However, there is a problem. The whole design of the COPLA tool requires that

the underlying RDBMS supports the SQL isolation level READ COMMITTED.

In this mode, running transactions are allowed to read only committed data. This

means that if a transactiont1 writes on an objectx, and a transactiont2 also wants

to write x, t2 will be placed on hold untilt1 commits, becauset1 already has an

exclusive lock onx.5

5Theoretically, if the RDBMS uses an optimistic approach, it would abortt2. However, the
most widely used RDBMS, including PostgreSQL, over which the COPLA prototype runs, use
lock-based concurrency management.

4.5. IMPLEMENTATION 71

Now, imagine that the transactiont1 above was being executed on behalf of

a COPLA session writing on an object. Andt2 was theTask thread applying the

transaction changes of a transaction. You now have a deadlock, because when

the session requests a commit, it will send its message through. However, that

message will never arrive, because theTask thread is busy writing on the database.

And theTask thread will never unblock, because the session will never commit!

This case can occur when a running session writes to an object afterTask

has aborted conflicting transactions (line 24 ofhandleTxMessge), but before it

actually writes to the database (lines 49–52 of the same function). This prob-

lem is further compounded by the COPLA architecture: like it was described in

Section3.7.2, the consistency protocols are not informed of object writes, they

are made directly by the CLIB layer. The solution is to handle session reads as

potential writes (because to write on an object a session must read it first).

The following mechanism was implemented in the code. An array namedcur-

rWrites contains the writes that theTask thread is performing at the time. Before

handleTxMessage writes to the database, or aborts any transactions, it fills this

array, on lines 17–21. If a session is going to read objects, it must first check if

they are currently being written byTask, on lines 11–37 ofaddReads. If they

are, then the session waits for theTask thread to finish (note thataddReads is

calledbeforeany read is performed, so this prevents the offending session from

blockingTask’s transaction). WhenhandleTxMessage aborts conflicting transac-

tions, it wakes up all transactions waiting oncurrWrites, on lines 27–29. This will

cause sessions that were “caught” byabortConflictingTransactions to be aborted

(note, inaddWrites, that the waiting loop of line 11 is broken in case the session is

aborted, and an exception is thrown on lines 39–41 to abort the session). Finally,

after the writes are performed on the database,handleTxmessage clears the ar-

ray and wakes up all transactions that were waiting oncurrWrites (these were the

72 CHAPTER 4. THE NONVOTING PROTOCOL FOR GLOBDATA

transactions that would cause the deadlock), on lines 72–75. The sessions waiting

on addReads will wake up, and their check oncurrWrites (lines 19–26) will fail,

enabling them to proceed.

1 class VersionCompare {
2

3 private static final int MSB_MASK = 0x80000000;
4

5

6 /∗ if v_one is smaller than v_two∗/
7 public static booleanlessThan(int v_one, int v_two) {
8 if ((v_one & MSB_MASK) != (v_two & MSB_MASK))
9 return ((v_one << 1) > (v_two << 1)) ;

10 else
11 return (Math.abs(v_one) < Math.abs(v_two));
12 }
13 }

Above we can see the source code for the version compare function. The

version number mechanism must deal with wrap-around. A version number is

a 31-bit number, with the leftmost bit (the sign bit) reserved for wrap-around

signaling, and starts with 0. When it reaches 231− 1, it will wrap around, and

continue with negative numbers. As such,−2 is actually greater than 231−3, for

example.

4.6 Optimistic delivery

As described in Chapter3, the atomic broadcast primitive developed in the project

has the possibility of delivering a message optimistically (opt-deliver), i.e., the

message is delivered in a tentative order, which is likely to be the same as the final

order (u-deliver). This can be exploited by the consistency protocol. The tentative

order allows the protocol to send the transaction’s updates to the database earlier.

Instead of waiting for the final uniform order to perform the writes, they are sent

4.6. OPTIMISTIC DELIVERY 73

to the database as soon as the tentative order is know. When the final order arrives,

all that is required is to commit the transaction. This hides the cost of writing data

behind the cost of uniform delivery, effectively doing both things in parallel.

Upon reception of an opt-deliver message, all steps in thecommit() function

are executed, with the following modifications: in step 3(a), conflicting transac-

tions are not aborted, but placed on hold (transactions on hold can execute nor-

mally, but are suspended when they request a commit, and can only proceed when

they return to normal state); in step 3(b-ii), the data is sent to the UDS, but the

transaction is not committed.

When the message is u-delivered, and its order is the same as the tentative

one, all transactions marked on hold on behalf of the current one are aborted, and

the transaction is committed. If the order is not the same, then the open UDS

transaction is aborted, all transactions placed on hold on behalf of this one are

returned to normal state, and the message is reprocessed as if it arrived at that

moment.

In terms of the implementation, theTask code is the only one that will change.

Below we can see the modified code.

1 public void run() {
2 while (true) {
3 CommAPIMessage msg =null ;
4

5 msg = commApi.receive();
6 if (msginstanceof SendToAll) {
7 if (((SendToAll) msg). getOptimistic ()) {
8 TransactionMessage tm =
9 TransactionMessage.deMunchTrans(((SendToAll)msg).getData());

10 if (recover) {
11 recMsgQueue.addLast(tm);
12 } else {
13 handleOptTx(tm);
14 }
15 } else {
16 TransactionMessage tm =

74 CHAPTER 4. THE NONVOTING PROTOCOL FOR GLOBDATA

17 TransactionMessage.deMunchTrans(((SendToAll)msg).getData());
18 if (recover) {
19 recMsgQueue.addLast(tm);
20 } else {
21 handleTxMessage(tm);
22 }
23 }
24 } else if (msginstanceof SendTo) {
25 if (msginstanceof LogRequestMessage) {
26 handleLogRequest((LogRequestMessage) msg);
27 } else if (msginstanceof LogReplyMessage) {
28 handleLogReply((LogReplyMessage) msg);
29 }
30 } else if (msginstanceof CommAPIView) {
31 // new view
32 blocked = false;
33 while (! msgQueue.isEmpty())
34 commApi.send((CommAPIMessage) msgQueue.removeFirst());
35

36 rtm.newView((CommAPIView) msg);
37 } else if (msginstanceof CommAPIBlockOk) {
38 synchronized(blockLock) {
39 blocked = true ;
40 commApi.send(msg);
41 }
42 }
43 }
44 }

Here we see the new main loop for theTask thread. An incoming transaction

message can now be delivered optimistically (line 7), or in final order.

1 /∗∗
2 ∗ Handles transactions delivered with tentative order .
3 ∗ @param msg the received message.
4 ∗/
5 private void handleOptTx(TransactionMessage tm) {
6 OptMsg om =newOptMsg(tm);
7

8 if (checkAgainstQueue(om)) {
9 optMsgQueue.addLast(om);

10 om. consistent = checkPhase(om);
11 } else {

4.6. OPTIMISTIC DELIVERY 75

12 discardMsgQueue.add(om);
13 }
14 }

Above we see the (very simple) code for initially handling optimistically deliv-

ered messages. First, the message is first checked against all opt-received but not

yet confirmed transaction messages (line 8). If any of these writes on an object that

the current transaction has read, then the transaction will quite likely be aborted.

Has such, it is placed on the discarded message queue (line 12), which contains

transactions that were aborted during the opt-deliver phase. If the message passes

the test, it will be placed on the opt-received message queue and proceed to the

check phase (lines 9–10).

The code for the check phase is identical to thehandleTxMessage procedure

of the original implementation, save two details: it does not commit the transac-

tion after performing the writes on the database, and it returns the outcome of the

consistency check in the end.

1 /∗∗
2 ∗ Handles transaction messages received in final order .
3 ∗ @param msg the received message.
4 ∗/
5 private void handleTxMessage(TransactionMessage tm) {
6 OptMsg om;
7

8 // check if this message has not been discarded
9 chkOm.tm = tm;

10 chkOm.sid = tm.sid ;
11 if (discardMsgQueue.contains(chkOm)) {
12 discardMsgQueue.remove(chkOm);
13 if (checkPhase(chkOm)) {
14 commitPhase(chkOm);
15 }
16 return ;
17 }
18

19 while (! (om = (OptMsg) optMsgQueue.removeFirst()).tm.sid . equals (tm.sid) &&
20 optMsgQueue.size() != 0) {

76 CHAPTER 4. THE NONVOTING PROTOCOL FOR GLOBDATA

21 // all these messages are out of order
22 if (rtm. isLocal (om.tm.sid)) {
23 ProtocolSession s = rtm. sessionList . getSession (om.tm.sid) ;
24 // don’t notify client , tx will try to commit when final order arrives
25 s . abortNotNotify () ;
26 } else {
27 om.sc. abortSession () ;
28 try {
29 om.sc. closeSession () ;
30 om.sc =null ;
31 } catch (PersistentLayerException e) {
32 error ("PersistentLayerException closing indep. SC");
33 e. printStackTrace () ;
34 Util . fatalCondition () ;
35 } catch (CloseSessionException e) {
36 error ("CloseSessionException closing indep. SC");
37 e. printStackTrace () ;
38 Util . fatalCondition () ;
39 }
40 }
41 discardMsgQueue.add(om);
42 }
43

44 commitPhase(om);
45 }

When a transaction message’s ordering is confirmed by the communications

module, it is delivered in final order, and processed by the above procedure.

First, we must check if the transaction being processed was not placed on the

discard queue earlier (line 11). If so, then we must repeat the check phase, to

find out if the transactions that would potentially abort the current one actually

committed (and thus aborted this transaction). If the check phase returns true,

then we commit the transaction immediately (line 14).

In case the message was not in the discard queue, then we must verify the

ordering of all the other already opt-received transactions. Any message that in

between the current top of the queue and the opt-delivered version of the current

4.6. OPTIMISTIC DELIVERY 77

transaction is out of order (line 19).6 These transactions will then be aborted. For

local transactions, the process is very similar to aborting an inconsistent transac-

tion in the regular version of the protocol: the session is found on the session list,

and aborted (lines 23–35).7 For remote transactions we need to abort the session

opened by the protocol for applying their modifications (lines 28–39). Finally,

these aborted transactions are placed on the discarded queue (line 41), since they

were aborted during their optimistic phase. After this process is complete, the

transaction proceeds to the commit phase (line 44).

1 /∗∗
2 ∗ Commits the given transaction .
3 ∗ @param om the transaction to commit.
4 ∗/
5 private void commitPhase(OptMsg om) {
6 if (om. consistent) {
7 if (rtm. isLocal (om.tm.sid)) {
8 ProtocolSession s = rtm. sessionList . getSession (om.tm.sid) ;
9 if (s != null) {

10 s . setState (ProtocolSession .COMMITED);
11 }
12 } else {
13 try {
14 om.sc.commitUDS();
15 om.sc. closeSession () ;
16 } catch (PersistentLayerException e) {
17 e. printStackTrace () ;
18 Util . fatalCondition () ;
19 } catch (CloseSessionException e) {
20 e. printStackTrace () ;
21 }
22 }
23 } // if its not consistent , all was done on checkPhase
24 }

6Note that when the system is stable and the optimistic and final orders are the same, the
opt-delivered version of the message is at the top of the queue.

7The reason for not notifying the client is for code simplicity. IF the client was notified, it
would cause a reset of the session data, which means that when the final message for the aborted
transaction was received, then the code would have to take in to account the possibility of an
opt-delivered version not being present in any of the queues, complicating the code.

78 CHAPTER 4. THE NONVOTING PROTOCOL FOR GLOBDATA

The commit phase simply checks if the transaction is consistent (line 6), and

then commits it.

It should be noted that this optimization was not tested in the evaluation shown

in the next chapter, because its implementation at the time of the evaluation was

not completed.

4.7 Summary

In this chapter, I presented the NonVoting consistency algorithm. A general de-

scription of the algorithm was given, followed by a description of the COPLA

module where the algorithm is implemented, and the implementation code itself.

A discussion of an optimization to the algorithm concluded this chapter. In the

next chapter I will present an evaluation of the algorithm against other consis-

tency algorithms.

Chapter 5

Evaluation

This chapter will present an evaluation of the protocol, against the other two pro-

tocols implemented for COPLA. This evaluation is based upon comparison tests

performed by the academic partners, to evaluate the different consistency protocol

implementations, and reports made by the industrial partners, which had the re-

sponsibility of designing and implementing independent testing applications, both

for correctness and performance tests.

First, a brief description of the other two protocols is provided. Then, the

testing conditions and test results are given. Each of the consistency protocols

will be evaluated according to the following criteria:

Number of messagesThe number of messages used by each protocol to commit

a transaction.

Transaction distribution For the total number of transactions performed at a

node, the percentage of commits and aborts.

Transaction average time The average time a transaction takes to complete.

These criteria will be evaluated under three test scenarios, that attempt to em-

ulate the effects of different usage patterns. Each scenario is run in two network

79

80 CHAPTER 5. EVALUATION

configurations, LAN and WAN.

As it was mentioned in the previous chapter, because the implementation of

the optimized version of the protocol, taking advantage of optimistic message

delivery, was completed only at a very late stage of the project, it could not be

included at the time these tests were performed.1

An analysis of these results is then performed, according to different expected

usage patterns of COPLA, to determine what is the most appropriate protocol for

each situation.

5.1 The other COPLA protocols

5.1.1 The full object broadcast protocol

The FOB protocol was created by the ITI Valência team. It uses the concept of

object ownership. The delegate node of a transaction creating an object gets its

ownership.

To decide the outcome of some transaction, the delegate node calls the owners

of all objects used by that transaction passing the version numberv read by that

transaction for that object and the operation to be performed (either read or write).

The owners deny permission to access the object ifv is lower than the current ob-

ject version hold at the object owner or if some other transaction has been granted

permission to write that object.

If the delegate node collects permissions for all objects, it will reliably broad-

cast the write set of that transaction to every node in the system, with the updated

version numbers. The reliable broadcast messages must be delivered in First-In-

First-Out (FIFO) order with respect to the sender. When the permission is refused

1Obviously, the optimized implementation was tested for correctness, but the testing conditions
were not the same, and as such the test results would not be comparable.

5.1. THE OTHER COPLA PROTOCOLS 81

by at least one node, the delegate node will call those that have already grant him

permission and cancel the operation.

In this protocol, all active nodes are expected to have the latest version of all

objects, retrieved from the message reliably broadcasted by the delegate nodes. In

the case of failure of some node, a deterministic algorithm temporarily transfers

the ownership of its objects for some other node.

5.1.2 The voting protocol

The Voting was the second protocol created by the FCUL Lisboa team. This

protocol uses two different messages, broadcast by the delegate node of some

transactiont, one using a total order protocol, and the other a reliable broadcast

protocol. The first is issued whent is requested to commit and includes thewrite

set. The second is issued when the delegate node can inform the remaining par-

ticipants of the final outcome fort which can be either COMMIT or ABORT (in

the literature this second message is called the “vote”).

Each node keeps track of changes to the objects retrieved by its transactions

and crosses this information with thewrite set of every transaction for which

it receives a COMMIT vote. It will abort all local transactions whose read set

intersects the write set of committed transactions.

The above condition holds until the delegate node gets its first message totally

ordered and decisions of all previous transactions have been issued. After this

point no concurrent transaction can change the objects in theread setof t and it is

safe to vote for COMMIT that transaction. TheAbort message on the other hand

can be issued much earlier, as soon as thewrite setof some other transaction has

intersectedt ’s read set.

Nodes receiving COMMIT decisions should apply the changes in thewrite set

to their local replicas of the database.

82 CHAPTER 5. EVALUATION

1 * * *
2 * * *
3 10.101.84.1 (10.101.84.1) 0.779 ms 0.688 ms 0.618 ms
4 FCUL-7500.net.ul.pt (194.117.0.249) 1.307 ms 5.481 ms 4.785 ms
5 ROUTER25.Hssi3-0.Lisboa.fccn.pt (193.136.1.229) 1.678 ms 1.861 ms 1.781 ms
6 ROUTER7.ATM2-0.139.Lisboa.fccn.pt (193.136.1.33) 3.850 ms 8.673 ms 10.444 ms
7 ROUTER1.GE0-2-0.5.Lisboa.fccn.pt (193.137.0.11) 6.963 ms 5.488 ms 12.796 ms
8 rccn.es1.es.geant.net (62.40.103.49) 27.657 ms 12.653 ms 15.762 ms
9 * * *
10 GE1-1-0.EB-IRIS2.red.rediris.es (130.206.220.2) 12.984 ms 16.352 ms 14.229 ms
11 AT0-0-0-2.EB-Valencia0.red.rediris.es (130.206.224.6) 25.256 ms 27.022 ms 19.950 ms
12 upv-router.red.rediris.es (130.206.211.186) 210.957 ms 212.411 ms 207.150 ms
13 kabrakan-dmz.net.upv.es (158.42.255.1) 198.307 ms 197.711 ms 207.377 ms
14 atlas-rou.net.upv.es (158.42.255.33) 207.809 ms 196.410 ms 180.919 ms
15 sidi3.iti.upv.es (158.42.51.73) 195.779 ms 196.814 ms 248.047 ms

Figure 5.1: The output of a typical trace route between hosts in FCUL (Lisbon)
and ITI (Valencia)

5.2 The testing environment

This section describes the testing conditions under which the protocols will be

evaluated. First, the testbed itself is described, followed by the test applications.

We also analyze the expected abort rate of the test application, to serve as a guide-

line for verifying test results. Finally, we shall look at each of the testing scenarios.

5.2.1 Testbed

Tests have been made in local and wide-area networks. The local area network is

a 10Mb/s Ethernet connecting three computers of the research lab of the FCUL

computer science department. The wide-area environment connected two hosts

in Lisbon with one node at ITI facilities in Valência. Measures were taken by

night. The average round trip delay is of 30mswith approximately 1% packet

loss. A typical trace of the route followed by packets between the hosts in Lisbon

and Valência is presented in figure5.1. First two lines show each one firewall on

the entry of the Computer Science Department which refuse to reply with ICMP

packets. None of the firewalls disturbs nodes connectivity.

All tests are performed using three hosts: three hosts in Lisbon, for the LAN

tests, and two hosts in Lisbon and one in Valência for the WAN tests. Hosts

5.2. THE TESTING ENVIRONMENT 83

in Lisbon, here namedL1,L2 andL3 have 800MHz Pentium III processors with

512MB RAM running Linux Mandrake 8.2 (kernel version 2.4.19) and Java Vir-

tual Machines v. 1.4.1 (build 1.4.1-b21). The host in Valência (named V1) is a

450MHz Pentium III processor with 256MB RAM running RedHat 7.2 (kernel

version 2.4.18) and jdk 1.4.0 (build 1.4.0-b92).

5.2.2 The test application

The test application is composed of two independent programs, one performing

updates to some objects, called theapp_writerand another querying the database,

called theapp_reader.

When it is started, theapp_writeradds four objects of the same class to the

database. Each of these objects is simply composed of an integer, initialized so

that the sum of all objects in the system is 999. At random intervals ranging

from 0 to 2000 milliseconds, the writer attempts to perform a transaction. Each

transaction will decrease by some amount the value of one of the objects and

increase, by the same amount, the value of another object, so that the sum of all

objects remains constant in the system. The amount is a random integer such that

the value stored in the object that is decreased remains greater or equal to zero and

the final value of the increased object remains lower than 1000.

Theapp_readerqueries the database also at random intervals between 0 and

2000 milliseconds and presents the values of the objects read. It also checks the

integrity of the database, stopping the application if the sum of all objects becomes

different from the expected constant. It is interesting to notice thatapp_reader

applications performread-only transactions. All protocols optimize this kind of

transactions by keeping them local to the delegate node.

The set of objects read and written is configurable in both programs. One can

instruct theapp_writerto operate exclusively over the objects it has created or to

84 CHAPTER 5. EVALUATION

move amounts between any two objects in the system. Theapp_readercan also

be tailored to peek only the objects inserted by some writer or to retrieve the entire

database state.

The programs proceed echoing to the screen their progress. In the case of the

app_readers, they notify the user about the aborted transactions or show the values

retrieved from the database for the committed transactions. For each transaction,

app_writers describe the amount being moved, the objects operated and the trans-

action outcome. After 5 minutes of execution, bothapp_readerandapp_writer

output to the screen the number of committed and aborted transactions and the

average time for each transaction. Programs are manually started in a fast succes-

sion. In order to prevent the latest applications to be started from benefiting from

a lower degree of concurrency, the programs continue to execute after this period

of time. The programs are manually stopped after every instance has printed out

its final results.

5.2.3 Expected abort rate

To provide a clearer overview of the results presented, it is therefore important to

estimate in theory the expected abort rate. The following paragraph provides a

raw estimate of this rate using the testbed application.

The test application operates over a quite limited set of objects. Each update

transaction picks at random two (distinct) objects out of twelve. The tuple space is

therefore, 12×11= 132. Two concurrent transactions will conflict if they pick at

least one object in common. In the above tuple space, there are 42 tuples sharing

at least one object, so the probability of this event is42
132 = 7

22. Eachapp_writer

will sleep a random interval between each transaction. One also needs to consider

the probability of two transactions to occur simultaneously. Figure5.3shows that

it is reasonable to assume that update transactions will take 600msto execute. The

5.2. THE TESTING ENVIRONMENT 85

probability of some other transaction to start in this interval is600
2000 = 3

10. So, the

probability of one transaction to start concurrently with the execution of another

and that both share at least one object is given by the product of both values above

or 3
10×

7
22 = 21

220. All scenarios described bellow execute three writers, one at each

host. Therefore, each transaction may be aborted by two others and the expected

abort rate for update transactions becomes 2× 21
220≈ 19%.

The reader component of the application always queries the entire database.

Any read-only transaction will be aborted if some update transaction commits

concurrently with its execution. Based on the values presented in figure5.3, one

can estimate that read-only transactions have a duration of approximately 350ms.

The abort rate of read-only transactions will be given by the probability of success

of the update transaction times the probability of the update transaction to finish

while the read-only is executing. The existence of three writers require that the

above value be multiplied by three so the abort rate for read-only transactions

becomes 3× 350
2000×

89
110≈ 36.4%.

These values are substantially higher than what might be expected for typical

commercial databases. One should also notice that the above values take into the

calculation only the most significant factors. While some of them result from the

nature of the system (like the transactions execution time), others like the number

of objects or the characteristics of the read-only transaction are introduced by the

test application, which was not particularly tailored for benchmarking.

5.2.4 Evaluated scenarios

The tests described here try to compare the performance of the protocols under

different configurations. We now proceed to describe each of the performance

tests that have been made.

86 CHAPTER 5. EVALUATION

Scenario #1: one active replica This scenario is used as a control for the tests

realized by the industrial partners. In this scenario, only one reader and one writer

are used and they query the same database replica. The remaining two nodes

simply mirror the state of the active replica. Because only one program is updating

the database, it is expected that the writer always commits its transactions.

Scenario #2: one owner, several clientsThis scenario extends the previous one

by placing one reader and one writer over each replica. However, all objects have

been created only by one node.

Scenario #3: shared data As in the previous scenario, one reader and writer is

placed over each replica. However, both are free to randomly access any objects

in the system, which could have been inserted by them or by other nodes. This is

the scenario that inserts a higher degree of concurrency in the system.

5.3 Evaluation

This section compares the results achieved by each protocol in the scenarios out-

lined above. First, we will analyze the number of messages exchanged by each

protocol, since this is independent of the usage pattern, and will help us to bet-

ter understand the results obtained by each protocol. Then we shall examine the

results for the other criteria under each scenario.

5.3.1 Number of messages

The number of messages required by each protocol to commit a message is pre-

sented in Table5.1.

The number of messages used by the FOB protocol depends on the read set and

5.3. EVALUATION 87

Protocol # messages Type Content

FOB 2∗ [0..n−1] PtP use request
1 RB WS

Voting 1 UTO WS
1 URB Decision

NonVoting 1 UTO RS versions + WS

n: the number of replicas in the system
PtP: Point-to-Point
RB: Reliable Broadcast
URB: Uniform Reliable Broadcast
RS: Read Set
UTO: Uniform Total Order
WS: Write Set

Table 5.1: Messages issued by each protocol to commit one transaction

number of replicas in use. Two point-to-point messages are exchanged between

the delegate node and each node owning at least one of the objects in the read

set. The delegate node omits this step for the objects owned by himself. The

low-level number of messages used by the remaining protocols is implementation

dependent. Uniform Total Order, for example, requires at least three rounds of

messages. Each round may be implemented in one single message if IP Multicast

is used (what is well suited for LANs) or over several messages if standard point-

to-point UDP or TCP protocols are used. The following sections will analyze this

subject with greater depth when it shows to be advantageous for the reader.

5.3.2 Scenario #1

The rate of committed and aborted transactions for scenario #1 is presented in

figure 5.2. As expected, none of the protocols aborted any update transactions

because there are no concurrent updates to the database.

Figure5.3 shows that the FOB protocol achieves a lower transaction average

time, particularly on LANs. Further below we will see that the difference be-

88 CHAPTER 5. EVALUATION

Figure 5.2: Read-only transactions distribution in scenario #1

Figure 5.3: Transactions average time (ms) in scenario #1

tween FOB and the remaining two protocols is greater in the industrial partner’s

performance tests, because they introduced a much higher load in COPLA, using

simultaneously several writers. The number of messages required by each proto-

col is reflected in the average transaction times. Since nodeL1 owns all objects

and is the delegate server of every transaction, it does not need to send any mes-

sage requesting permission to change the objects. In this case, FOB issues a single

Reliable Broadcast message with the state update after committing the transaction.

Update transactions require one uniform total ordered message for the NonVoting

protocol and two for the Voting protocol. Uniform total order protocols require

5.3. EVALUATION 89

update read-only

Figure 5.4: Transactions distribution in scenario #2

at least three communication steps for each message and this cost is reflected on

the average update transaction time. All protocols query the local database state

for read-only transactions, so no messages are exchanged. The values presented

for read-only transactions are related with the implementation complexity to en-

sure transaction consistency. One can notice that, in general, aborting a read-only

transaction is a more time consuming operation than committing it. Notice that

the theoretical estimate of the abort rate is consistent with these results. The value

presented before should be divided by 3 because only one writer is updating the

database, which suggests values around 12%.

The results for each protocol are quite similar when one of the nodes suffers

from high latency w.r.t. the remaining. In this scenario, the remote replica is

passive in the sense that it does not provide any contribution to the protocol. Its

work is limited to receive and apply database updates.

5.3.3 Scenario #2

The results for scenario #2 were taken creating all objects in nodeL1. Figures5.4

and5.5 present respectively the outcome rate and the average time for this sce-

nario.

90 CHAPTER 5. EVALUATION

update read-only

Figure 5.5: Transactions average time (ms) in scenario #2

The ownership used by FOB does not hurt significantly nodesL2 andL3 but

becomes visible for the remote nodeV1. The contribution of this node for the

total number of executed transactions is minimal. The NonVoting protocol is the

one that shows to be less prejudiced by having a remote node: the execution time

of committed and aborted transactions is almost stable across all nodes and for

either update or read-only transactions and it is the one who presents a lower time

for committed and aborted update transactions inV1.

The advantages of using LANs are also visible in the higher success rate of

read-only transactions for the WAN tests: because the number of committed up-

date transactions decreases, the probability of aborting read-only transactions also

becomes lower. The use of two total order messages for committing a transaction

significantly hurts the number of committed transactions for the Voting protocol:

on average, transactions take longer to get their outcome in the Voting protocol.

5.3.4 Scenario #3

The results for scenario #3 are presented in figures5.6and5.7. In all tests. Voting

and NonVoting protocols used a sequencer based total order protocol. In this pro-

tocol, the definition of the message order is centralized in one of the participants,

5.3. EVALUATION 91

update read-only

Figure 5.6: Transactions distribution in scenario #3

update read-only

Figure 5.7: Transactions average time (ms) in scenario #3

named the sequencer. In these runs, the sequencer node wasL2. An implementa-

tion feature explains the good results achieved by both protocols in this node: the

messages issued by the sequencer are immediately ordered before going into the

network. The Voting protocol is the one who most benefits because it uses two

totally ordered messages for each update transaction.

The impression left by scenario #2 that the FOB protocol is not particularly

sensitive to data distribution in LANs is confirmed: it presents the best average

results for both update and read-only commits and the lower abort rates. However,

when used over a WAN, FOB performance begins to degrade. It presents the

worst performance for committing update transactions on all nodes when one of

92 CHAPTER 5. EVALUATION

them is remote. While the commit time increases for every protocol, FOB is the

one for whose values grow more substantially. For the Voting and NonVoting

protocols, the presence of a remote node is almost negligible for those nodes near

the coordinator. As expectedV1 performs worst in these protocols but the two

totally ordered messages penalize more substantially the Voting protocol.

Although the substantial increase of the transaction duration when comparing

the LAN and WAN environment, the commit rate of the NonVoting protocol does

not decrease substantially, remaining above the Voting protocol rate in LANs.

The locality of the read-only transactions makes its performance almost unaf-

fected by the distance of the nodes. As usual, the commit rate grows in inverse

proportion of the performance for the update transactions.

5.4 Analysis of the results

Previous scenarios have shown that several different factors can influence the

consistency protocols performance. This section summarizes previous results by

making some suggestions on the adequacy of each consistency protocol for dif-

ferent usage patterns. These consider the following factors:

• number of replicas;

• system loadthat accounts for the number of requests to the system per unit

of time;

• system coverageeither LAN or WAN;

• primary data access locationwhich is concerned with the number of ac-

cesses to objects created in a different node.

• concurrencymeasures the degree of concurrent access to the same set of

objects, what could result in a significant number of transaction aborts.

5.4. ANALYSIS OF THE RESULTS 93

Name # replicas load coverage access concurrency

Small small light LAN local small
Med-local medium medium LAN local small
Med-wid medium medium WAN distributed high
Large large high WAN local high

Table 5.2: Combinations of some factors that influence the decision of the consis-
tency protocol to use in COPLA

A set of possible scenarios combining these factors have been devised and are

presented in table5.2. Each of these combinations will be explained bellow.

Small: When all nodes are located in one LAN the FOB protocol shows to be the

most adequate. The scenarios above do not show a significant distance between

FOB and the remaining protocols, however, the distance between both protocols

is emphasized when all protocols are placed under a higher load. The results from

industrial partners also show that both the Voting and NonVoting protocols require

more memory and processing time, what makes them inadequate for situations

where load peaks occur, for example in web applications.

Med-local: As the number of hosts grows, the FOB advantage will depend on

the distribution of the creation of objects. In this protocol, the number of messages

per transaction varies with the number of object owners: those that created the

objects involved in a transaction. If the number of objects is stable and they were

mostly created in one single node2 then the number of messages used by FOB will

always be small and it will keep the advantage against the remaining protocols.

However, if object instantiation is scattered against a large number of replicas

and the typical transaction requires access to objects created in several nodes, the

2for example, this will be the case when the data has been ported from an existing relational
database by a specialized application

94 CHAPTER 5. EVALUATION

NonVoting protocol may be preferable. To prevent the number of messages for

this protocol from growing with the number of replicas, it is advisable to use the

IP Multicast module. This module brings no benefit to the protocols for a small

number of replicas. The Voting protocol performance will have a greater increase

with the utilization of IP Multicast than the NonVoting protocol.

The NonVoting protocol performance will degrade for transactions having a

huge number of objects in their read sets. In this case, it will probably be necessary

to fragment the low level datagram, increasing message transmission time. This

case will also be unfavorable for the FOB protocol when data is scattered across

a large number of replicas. The Voting protocol is unaffected by the dimension of

the read set. It is probable that the Voting protocol achieve a better performance

in this situation.

Med-wide: This case extends the previous one by distributing the replicas across

a Wide Area Network. As scenario #3 shows, the NonVoting protocol provides a

better performance than the remaining for both update and read-only transactions.

The lack of support for IP Multicast in the Internet prevents this optimization from

being applied in this case. However, the indulgent total order protocol will reduce

the asymmetries between the nodes in the LAN where the sequencer resides the

remaining by virtually placing one sequencer in each LAN. While this will not

hide the latency from the system, it will improve performance over the conven-

tional sequencer algorithm used in the tests on this report.

As in the previous case, the size of the read set will affect both the FOB and

the NonVoting protocol, possibly turning the Voting protocol to be the best choice.

Large: In this case, nodes are grouped in clusters connected by LANs, and each

cluster is connected to each other by a WAN. The case where each node cluster

will access mostly to its own data, although it is replicated over all other units was

5.5. PROTOCOL COMPARISON CONCLUSIONS 95

studied in the WAN tests for scenario #2. FOB has shown to be the most favorable

protocol in this situation. However, it should be noticed that FOB provides a

highly unfair environment for hosts outside the LAN that will see a huge number

of their transactions attempting to access foreign data aborted and suffer a high

delay. Collecting system-wide data (statistical analysis, for example) shows to be

difficult when the load is high in some node clusters.

5.5 Protocol comparison conclusions

As shown in the previous sections, the protocol presented in this work operates

well in the operating scenarios devised for COPLA. It is the best choice for one of

the three cases considered above, and can be a good contender for other scenarios,

depending on the particularities of the transaction load.

5.6 Summary

In this chapter we evaluated the performance of the NonVoting replication algo-

rithm against other consistency protocol implementations for COPLA. We showed

that the algorithm performs well for some expected usage patterns, thus being a

useful addition to the COPLA system. The next chapter finalizes this thesis, and

establishes some guidelines for future work.

96 CHAPTER 5. EVALUATION

Chapter 6

Conclusion

Replicated databases are becoming increasingly common. They are no longer

restricted to small clusters of machines, sitting next to each other in one room,

connected together by a very high speed network. The increasing internation-

alization of businesses and organizations demands that database systems expand

with them. Although large-scale data replication solutions existed before, they

often traded relaxed consistency semantics for acceptable performance.

Recently, developments in group communications technology have shown us

that we can offer interesting ordering guarantees on broadcast messages, while

maintaining good performance levels, even on wide scale area networks (WANs).

Taking advantage of these developments, several authors proposed to take advan-

tage of these efficient communication primitives to build replication algorithms

that offer strong semantic guarantees, and also good performance on WANs.

This thesis approached the problem of replica management in a distributed

object-oriented database system. It presented a protocol to ensure data consistency

across the different nodes of the system. This protocol relies on recent advances

in group communication techniques, and the use of atomic broadcast as a building

block to help serialize conflicting transactions.

97

98 CHAPTER 6. CONCLUSION

This work reached a series of important goals.

• It contributed to the design of the COPLA tool, enabling it to make use of

several different consistency protocols, for maximum flexibility.

• It successfully adapted an existing replica consistency protocol, and imple-

mented it within the established framework.

• The resulting implementation was evaluated against competing protocol im-

plementations, and found useful on some of the operating scenarios for

COPLA, thus proving the validity of this work.

6.1 Future work

Despite the fact that COPLA is complete, and the GLOBDATA project is over, there

are still important issues to pursue with this replication technology, maybe even

independently of the COPLA tool.

Although the presented solution was complete, and implemented, it did not

address the problem of failed node recovery. Evidently, the proposed replication

management solution would not be complete without a recovery algorithm. We

have defined and implemented a simple approach to recovery. This simple re-

covery algorithm is described in the extended version of [30], but would require

further work to offer optimal performance.

Also, there is an optimization, which although it was considered in the pub-

lished papers [31, 30], was not implemented, mostly due to lack of time. This op-

timization, named deferred updates, aimed to exploit thelocality of data, that is,

the fact that on some replicated systems, distinct subsets of data are only changed

at one node, while the other nodes simply read it (one example of this is sales

records of a company with delegations in several countries). To exploit this, when

6.1. FUTURE WORK 99

a transaction that altered some data committed, the message it sent would contain

only the identifiers of the changed objects, and not the transaction updates them-

selves. The other nodes would keep a record of the node that had the latest version

of the data, and would request it in case it was needed.

The other direction of research would be to adapt the current implementation

to work on a regular SQL database. I believe that the current implementation is

abstract enough that no significant changes would be required, and the fact that

other systems [2] have proposed similar architectures is encouraging support.

100 CHAPTER 6. CONCLUSION

Bibliography

[1] Y. Amir and J. Stanton. The Spread wide area group communication sys-

tem. Technical Report CNDS 98-4, Center for Networking and Distributed

Systems, Johns Hopkins University, Baltimore, U.S.A., 1998.

[2] Y Amir and C. Tutu. From total order to database replication. InProceed-

ings of the 22nd IEEE International Conference on Distributed Computing

Systems (ICDCS’02), Vienna, Austria, July 2002.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman.Concurrency Control and

Recovery in Database Systems. Addison-Wesley, 1987.

[4] K. Birman and T. Joseph. Exploiting virtual synchrony in distributed sys-

tems. InProceedings of the 11th Symposium on Operating System Princi-

ples, pages 123–187, November 1987.

[5] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic

multicast.ACM Transactions on Computer Systems, 9(3):272–314, 1991.

[6] R. Cattell. The Object Data Standard: ODMG3.0. Morgan Kauffmann,

2000.

[7] Johns Hopkins University Center for Networking and Distributed Systems.

http://www.cnds.jhu.edu.

101

102 BIBLIOGRAPHY

[8] T. Chandra and S. Toueg. Unreliable failure detecturs for reliable distributed

systems.Journal of the ACM, 43(1), March 1996.

[9] Pascal Felber and André Schiper. Optimistic active replication. InProceed-

ings of the 21st International Conference on Distributed Computing Systems

(ICDCS’2001), Phoenix, Arizona, USA, April 2001. IEEE Computer Soci-

ety.

[10] M.J. Fisher, N.A. Lynch, and M.S. Paterson. Impossibility of distributed

consensus with one faulty process.Journal of the ACM, 32(2):374–382,

April 1985.

[11] H. Garcia-Molina and D. Barbara. How to assign votes in a distributed sys-

tem. Journal of the ACM, 32(4):841–860, October 1985.

[12] D. Gifford. Weighted voting for replicated data. InProceedings of the 7th

ACM Symposium on Operating System Principles, pages 150–162, USA,

December 1979.

[13] J. Gray, P. Helland, P. O’Neal, and D. Shasha. The dangers of replication

and a solution. InProceedings of the 1996 ACM SIGMOD International

Conference on Management of Data, pages 173–182, Montreal, Quebec,

Canada, June 1996.

[14] R. Guerraoui. Revisiting the relationship between non blocking atomic com-

mitment and consensus problems. InProceedings of the 9th International

Workshop on Distributed Algorithms (WDAG-9), LNCS 972, Springer Ver-

lag, pages 87–100, Le Mont Saint Michel, France, September 1995.

[15] M. Hayden. The Ensemble System. PhD thesis, Cornell University, Com-

puter Science Department, 1998.

BIBLIOGRAPHY 103

[16] J. Holliday, D. Agrawal, and A. El Abbadi. Using multicast communica-

tion to reduce deadlock in replicated databases. InProceedings of the 19th

IEEE Symposium on Reliable Distributed Systems (SRDS2000), Nürnberg,

Germany, October 2000.

[17] R. Jiménez-Peris, M. Patiño Martínez, B. Kemme, and G. Alonso. Im-

proving the scalability of fault-tolerant database clusters. InProceedings of

the 22nd IEEE International Conference on Distributed Computing Systems

2002 (ICDCS’02), Vienna, Austria, July 2002.

[18] B. Kemme and G. Alonso. A suite of database replication protocols based on

group communication primitives. InProceedings of the 18th International

Conference on Distributed Computing Systems (ICDCS), Amsterdam, The

Netherlands, May 1998.

[19] B. Kemme and G. Alonso. Transactions, messages and events: Merging

group communication and database systems. InProceedings of the 3rd

ERSADS European Research Seminar on Advances in Distributed Systems,

Madeira Island, Portugal, April 1999.

[20] B. Kemme and G. Alonso. Don’t be lazy, be consistent: Postgres-R, a new

way to implement database replication. InProceedings of the 26th Interna-

tional Conference on Very Large Databases, Cairo, Egypt, September 2000.

[21] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem.

ACM Transactions on Programming Languages and Systems, 4(3):382–401,

July 1982.

[22] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal. Extended

virtual synchrony. InProceedings of the 14th International Conference on

Distributed Computing Systems (ICDCS), pages 56–65, June 1994.

104 BIBLIOGRAPHY

[23] M. Patiño Martínez, R. Jiménez Peris, B. Kemme, and G. Alonso. Scalable

replication in database clusters. InProceedings of DISC’00, LNCS 1914,

pages 315–329, Toledo, Spain, October 2000.

[24] F. Pedone, R. Guerraoui, and A. Schiper. Exploiting atomic broadcast in

replicated databases. InProceedings of EuroPar (EuroPar’98), Southamp-

ton, UK, September 1998.

[25] F. Pedone, R. Guerraoui, and A. Schiper. The database state machine ap-

proach. Technical Report SSC/1999/008, École Polytechnique Federale de

Lausanne, Switzerland, March 1999.

[26] F. Pedone and A. Schiper. Optimistic atomic broadcast. InProceedings

of the 12th International Symposium on Distributed Computing (DISC’98),

Andros, Greece, September 1998.

[27] PostgreSQL. http://www.postgresql.org.

[28] A. Ricciardi and K. Birman. Using process groups to implement failure

detection in asynchronous environments. InProceedings of the 10th ACM

Symposium on Principles of Distributed Computing, pages 341–352, Mon-

treal, Canada, August 1991.

[29] L. Rodrigues, H. Fonseca, and P. Veríssimo. Totally ordered multicast in

large-scale systems. InProceedings of the 16th International Conference

on Distributed Computing Systems, pages 503–510, Hong Kong, May 1996.

IEEE.

[30] L. Rodrigues, H. Miranda, R. Almeida, J. Martins, and P. Vicente. The Glob-

Data fault tolerant replicated distributed object database. InProceedings of

BIBLIOGRAPHY 105

the First Eurasian Conference on Advances in Information and Communica-

tion Technology, pages 426–433, Teheran, Iran, October 2002. An extended

version is available at the author’s home page, at http://www.di.fc.ul.pt/˜ler.

[31] L. Rodrigues, H. Miranda, R. Almeida, J. Martins, and P. Vicente. Strong

replication in the GlobData middleware. InProceedings of the Workshop

on Dependable Middleware-Based Systems, pages G96–G104, Washington

D.C., USA, June 2002. IEEE. (Suplemental Volume of the 2002 Dependable

Systems and Networks Conference, DSN 2002).

[32] A. Schiper and A. Sandoz. Uniform reliable multicast in a virtually syn-

chronous environment. InProceedings of the 13th International Conference

on Distributed Computing Systems (ICDCS-13), pages 561–568, Pittsburgh,

Pennsylvania, USA, May 1993. IEEE Computer Society Press.

[33] A. Sousa, F. Pedone, R. Oliveira, and F. Moura. Partial replication in the

database state machine. InProceedings of the IEEE International Sym-

posium on Network Computing and Applications (NCA 2001), Cambridge,

MA, USA, October 2001.

[34] R. H. Thomas. A majority consensus approach to concurrency control

for multiple copy databases.ACM Transactions on Database Systems,

4(2):180–209, June 1979.

[35] P. Vicente and L. Rodrigues. An indulgent uniform total order algorithm with

optimistic delivery. InProceedings of the 21st IEEE Symposium on Reliable

Distributed Systems (SRDS’02), pages 92–101, Osaka, Japan, October 2002.

[36] R. Vitenberg, I. Keidar, G. Chockler, and D. Dolev. Group communication

specifications: A comprehensive study. Technical Report CS99-31, Comp.

Sci. Inst., The Hebrew University of Jerusalem note =.

106 BIBLIOGRAPHY

[37] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Database

replication techniques: a three parameter classification. InProceedings of

the 19th IEEE Symposium on Reliable Distributed Systems (SRDS2000),

Nürnberg, Germany, October 2000.

	Contents
	List of Figures
	List of Tables
	Introduction
	Objectives
	Results
	Thesis structure

	Related Work
	Group communication primitives
	System model and failure semantics
	Group membership service
	View synchronous multicast
	View synchronous atomic multicast
	Uniformity
	Atomic commit protocol

	Postgres-R
	University of Minho's partial replication
	Scalable middleware architecture
	The CNDS large-scale system
	Comparative analysis
	Summary

	The GlobData Architecture
	Operating scenario
	Copla components
	The Uniform Data Store
	GODL and GOQL
	Proxy and Packet Objects

	The consistency protocol layer
	The communications module
	The client interface library
	Interaction among components
	The Copla transactional model
	Interaction with the consistency protocols

	Summary

	The NonVoting Protocol For GlobData
	Architectural challenges
	Replication using atomic broadcast
	Replication strategies
	The Non-Voting Protocol
	Description
	Using versions for concurrency control
	Objects and classes

	Implementation
	The CP-API interface
	Class and function structure
	Detailed algorithm

	Optimistic delivery
	Summary

	Evaluation
	The other Copla protocols
	The full object broadcast protocol
	The voting protocol

	The testing environment
	Testbed
	The test application
	Expected abort rate
	Evaluated scenarios

	Evaluation
	Number of messages
	Scenario #1
	Scenario #2
	Scenario #3

	Analysis of the results
	Protocol comparison conclusions
	Summary

	Conclusion
	Future work

	Bibliography

