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Abstract—Distributed ledgers have received significant atten-
tion as a building block for cryptocurrencies and have proven to
be also relevant in several other fields. In cryptocurrencies, this
abstraction is usually implemented by grouping transactions
in blocks that are then linked together to form a blockchain.
Nodes need to exchange information to maintain the status
of the chain but this process consumes significant network
resources. Unfortunately, naively reducing the number of
messages exchanged can have a negative impact in performance
and correctness, as some transactions might not be included
in the chain.

In this dissertation, we study the mechanisms of infor-
mation dissemination used in Bitcoin and propose a set of
adaptive mechanisms that lower network resource usage. Our
experimental evaluation shows that is possible to lower the
bandwidth consumed by 10.2% and the number of exchanged
messages in 41.5%, without any negative impact in the number
of transactions committed.

I. INTRODUCTION

All cryptocurrencies, and Bitcoin (the most used cryp-
tocurrency at the time of this writing) in particular, maintain
a decentralised record that keeps track of all transactions that
have happened in a serial order [1]. The ability to maintain,
in a decentralised manner, a shared log that can be updated
by almost anyone has been considered useful for many other
fields beyond the cryptocurrency market, where this concept
was initially introduced. For instance, a shared log can be
used to keep a record of contracts, avoiding the need for the
physical presence of a notary.1

This distributed log is usually maintained as follows. First,
for efficiency reasons, multiple transactions are grouped
together in what is called a block. Then, blocks are linked
together to form a list which is called blockchain. This
linked list enforces a serial order over the blocks and, as a
consequence, over all transactions listed in the blocks. The
blockchain is maintained, in a decentralised manner, by a
set of peers. An interesting aspect of cryptocurrencies, like
Bitcoin, is that they use a decentralised open peer-to-peer
membership system. This means that nodes do not have
to know all the other nodes of the system, and any node
can join or leave the network at any given time, and still,
the protocol ensures the consistency of the blockchain. The

1For a list of examples, refer to
https://blockgeeks.com/guides/blockchain-applications/

distributed protocol is designed to work even if a fraction
of the nodes exhibit a rational or byzantine behaviour.

The protocol initiates by letting the nodes in the system
concurrently receive, validate, and relay transactions to other
nodes. Additionally, in parallel, each node also attempts to
generate the next block in the chain. To do this, nodes
are required to solve a challenging cryptographic puzzle
called the proof of work. When a node generates a block,
it will broadcast it through the network. The reception of
a new block makes all other nodes cancel the generation
of concurrent blocks and start attempting to generate the
subsequent block. Before accepting and relaying a block,
each node validates the blocks it receives.

From the brief description above, it easy to realise that the
task of broadcasting transactions is a fundamental procedure
in any distributed ledger. First, the transactions need to reach
the nodes that are generating blocks so that they can be
added to blocks. Second, they also need to reach the remain-
ing nodes, as knowledge about the existing transactions is
required to validate new blocks. In Bitcoin, the broadcast of
transactions works by letting nodes periodically advertise to
their neighbours the transactions they currently have. Their
neighbours, upon receiving advertisements for transactions
that they miss, will reply with requests for those transactions.
Therefore, a node can receive multiple advertisements for
the same transaction. In fact, it is desirable that the protocol
exhibits some redundancy, as this allows the propagation of
transactions to be reliable, even in the presence of faults.
Unfortunately, as we will discuss later in detail, the amount
of redundancy induced by the current Bitcoin is excessive,
causing a significant waste of network resources.

In this dissertation, we propose a number of techniques to
improve the efficiency of the transaction broadcast protocol
of Bitcoin. Our algorithms take advantage of already existing
asymmetries in the network. In fact, in the Bitcoin network,
only a fraction of the network (currently around 10%) spends
resources generating new blocks (these nodes are called min-
ers); the majority of nodes just relay information and main-
tain a copy of the blockchain. Based on this observation,
our strategy consists of skewing the dissemination algorithm
such that transactions reach miners faster, which will also
result in lower amounts of duplicated advertisements. The
propagation of transaction to nodes that are not miners may,
in result, exhibit higher latency, but this is not an issue for
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the execution of the Bitcoin protocol as the time window
to generate a new block is roughly 10 minutes. Also, our
algorithms leverage on the most recent mechanisms that
have been added to the standard Bitcoin protocol, namely
on new control messages that improve the dissemination of
transactions once they are added to a block. Our algorithms
are adaptive and adjust the dissemination bias as miners
leave or new miners join the network. An experimental
evaluation of the changes proposed shows a reduction in
10.2% of the bandwidth consumed and a reduction of 41.5%
in the total number of messages exchanged, without any
negative impact on the system resilience or transaction
latency.

II. THE BITCOIN LEDGER

Bitcoin was created in 2009 with the objective of pro-
viding a system that allows two entities to exchange goods
in a secure and anonymous way, without having to trust
each other or any single third entity. This is achieved with
a cryptographic coin, that can be exchanged between the
parties involved in a transaction. Transactions are grouped
in blocks and registered in a distributed ledger. Furthermore,
the ledger keeps track of all the coins that have been spent,
which forbids users from trying to spend the same coin twice
(an attack known as double spending). The Bitcoin ledger is
built by linking each block to its predecessor, hence, forming
an infinite chain of blocks named blockchain.

The protocol to maintain the Bitcoin ledger is quite
complex with many components and functionalities that
complement each other. Also, the protocol is evolving, as
the community finds new ways of improving its operation.
One of the protocol components is a membership algorithm,
that aims at ensuring that each node maintains connections
to other nodes of the system, chosen at random. These
connections among nodes form an overlay that is then
used to disseminate information, including the transactions
created by clients and mined blocks.

As noted previously, new blocks are generated concur-
rently by nodes named miners. Each miner picks a group
of transactions to form a block. A valid block has to
contain only valid transactions and also a proof that the node
solved the cryptographic puzzle. This cryptographic puzzle
is a function of the transactions included in the block and
of the hash of the previous block. Note that transactions
take different times to reach different nodes. Thus, it is
likely that the set of transactions chosen by two nodes to
include in a new block is going be different. The use of
cryptographic puzzles in this context has two advantages.
First, it discourages the creation of blocks with invalid
transactions, since the only way a for a node be rewarded is
if its block gets accepted into the blockchain. Second, the
difficulty of the puzzle lowers the probability that two nodes
generate a new block at the same time, an occurrence that
may create a fork in the chain. To avoid corrupted or invalid
blocks from being broadcast, each node has to validate a
block before relaying it. For a node to be able to validate
a block it needs the hash of the previous block and all the

transactions inside the block (a transaction is valid if it does
not uses an already spent coin). If a node does not have
all these pieces of information, it cannot validate the block
immediately, and it has to wait before relaying the block.

If a node receives a block at the same height as the one it
is trying to mine, the process of mining is interrupted. This
property also lowers the probability of two different blocks,
at the same height, begin generated concurrently. However,
if this happens and both blocks are broadcast through the
network a fork will happen. Forks are solved when one of
the branches grows longer than the other which will make
the network adopt the longest branch.

The algorithms used by Bitcoin to broadcast transactions
and blocks have been evolving over the years. Recently,
recognising that the Bitcoin protocol may consume an ex-
cessive amount of network resources, a patch was introduced
in the protocol aimed at saving network bandwidth [2]. We
briefly describe the current version of the protocol, including
the most recent patches. As referred previously, transactions
are broadcast through advertisements sent in Inv messages.
When a node receives an Inv message, it determines which
transactions it does not have and sends a GetData message
requesting those transactions. Finally, when a node receives
a GetData, it will reply with a TX message for each
transaction requested. Blocks are broadcast mainly in two
ways. The first one, and older, is through advertisements
similar to transactions. Once a block is found, a Headers
message is sent advertising the block. When a node receives
a Headers message referring to a new block, it requests
such block with a GetData message. The node will then
receive the block requested through a Block message. The
second strategy for broadcasting blocks consists in sending
a summary of the block through a CmpctBlock (compact
block) message. When trying to validate a block received
by a CmpctBlock message, if the node does not know all
the transactions required to validate the block, it can send
a GetBlockTX message requesting them. The first strategy
ensures that a node can validate a block as soon as it receives
it because all transactions are sent in the Block message,
even if the recipient has already received that information
via TX messages. The second approach aims at reducing this
redundancy, at the cost of a potentially slower propagation
of blocks in the network.

Additionally, each node maintains, for each neighbour,
a queue containing messages scheduled to be sent in the
future. When a new TX is received, after being validated,
it is added to the queue associated with each neighbour.
These queues are updated every time the node receives a
TX or a Block message. In particular, if a transaction T
is scheduled to be propagated to some neighbour n, but n
sends a TX or a Block containing T , T is deleted from
the corresponding send queue. This prevents nodes from
sending to a neighbour information that it already owns.
Periodically, the queues are flushed by sending Inv messages
to the respective neighbours.

The introduction of CmpctBlock messages helped in
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reducing some amount of unnecessary redundancy in the
Bitcoin protocol. However, we have found that there is still
significant room for improvement and that the redundancy
can be further reduced, as discussed in the next section.

III. IMPROVEMENT IN THE BROADCAST OF
TRANSACTIONS

In this section, we propose a set of changes to the
dissemination algorithm of transactions with the objective
of making it more efficient, namely by lowering the number
of redundant advertisements that each node receives. Our
proposal is based on the following observations:

• Currently, each node receives on average 6.6 duplicate
advertisements for each transaction (when would be
enough to receive a single one to ensure the reception
of a transaction).

• The network currently possesses two methods to
disseminate transactions: exchange of advertisements
(used when a transaction is not in a block) exchange
of block (used when a transaction is already added to
a block).

• For historical reasons, the second mechanism is more
efficient than the first one, since all the missing trans-
actions that a node might request are sent in a single
message (meanwhile through the advertisement method
a node has to send a message for each individual
transaction).

• In Bitcoin, the requirements for broadcasting transac-
tions are weak because the rate of generation of the
blocks is much slower than the processes of dissemi-
nation of transactions (on average a block is generated
once every 10 minutes).

• Miners are only a small fraction of the total number of
nodes in the network. However, although it is essential
that transactions reach miners, the protocol does not
distinguish miners from the rest of the nodes.

• In the current protocol, nodes send their advertisements
to all neighbours (125 in the worst case). This value
is substantially higher than the theoretical value for
epidemic broadcasting algorithms, which suggests that
even in the presence of failures, it is enough to send
information to a logarithmic number of neighbours with
respect to the size of the network [3]. With the current
size of ≈ 10 000 nodes it would be enough to send to
ln(10 000) ≈ 10 neighbours.

Our main objective is to lower the amount of duplicated
advertisements in the network while ensuring that the trans-
actions reach the miners. The intuition for the proposed
approach is to skew the process of dissemination towards
the most productive miners. However, this could put the
resilience of the system at stake. To prevent this, we also
broadcast transactions to the rest of the system through
alternative paths.

To achieve these results we have to first solve some
challenges. First, we have to be able to identify which nodes
are going to mine blocks, or which neighbours are connected

to miners. This is difficult because as we explained in
the previous chapter the process of mining is random and
any node can mine a block. Second, we have to give
priority to these nodes without compromising the resilience
of the system. As we have seen previously the process of
dissemination is crucial for Bitcoin to work properly, since
problems in the dissemination could open up Bitcoin to
multiple attacks, from selfish mining to double-spending.
Third, the paths that our protocol will establish cannot be
definitive as the Bitcoin network is prone to changes given
that nodes join and leave the network over time. As a matter
of fact, the Bitcoin network is very prone to change as can
be observed in sites such as bitnodes.earn.com that show
a fluctuation in the number of nodes from 9500 nodes to
12500 nodes in the last year.

Our approach encompasses three changes to the protocol.
First, nodes maintain, for each neighbour, a list of the
transactions sent by that neighbour and how long it took for
these transactions to be included in a block. Second, we also
maintain for each neighbour the time, it took to disseminate
a new block to the node. Finally, nodes use these metrics
to rank their neighbours and prioritise the dissemination of
transaction accordingly.

Next, we discuss the ranking process.

A. Ranking Neighbours

As miners are only a small fraction of the network, not all
nodes will be directly connected to miners. As previously
mentioned, our protocol has the requirement that nodes have
to determine from their neighbours which ones are mining
blocks.

A simple approach is to simply count the number of
hops a block takes since it is created until it reaches a
node. This means that if a node had a miner A and a
miner B at distances 1 and 2 respectively. If for instance,
the node received a block created by A then that block
would have a field with the distance with value 1. With
this information the node it would give priority to A when
disseminating transactions. However, this has two problems.
The first is that it is prone to manipulation by Byzantine
nodes. The second is that the smallest number of hops does
not necessarily mean the fastest path from a node to a miner.

It is important to note that we are not trying to exactly
determine which node is going to mine the next block, we
just want to determine which nodes have a higher probability
of mining a block or from the neighbours of a node which
nodes are connected to these nodes. Hence, the protocol will
attribute a higher rank to neighbours that:

• Disseminate blocks as fast as possible - because miners
once they mine a block want to disseminate that block
as fast as possible in order for the rest of the network
to build on top of it;

• Disseminates all relevant blocks - because once a miner
learns about a new block it starts immediately trying to
mine on top of that block hence is in its best interest
to also relay that block;
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• Adds transactions as fast as possible to blocks - because
apart from the block reward miners also profit from the
taxes imposed on transactions when they are added to
blocks.

With this intuition, each node is going to prioritise the
neighbours that have the fastest paths to miners, or are
miners themselves. This is done in a decentralised fashion
but results in fast paths to miners emerging over other paths.
Locally, each node, classifies neighbours as follows:

classT = (
kT

nT
+ aT − nT +

yT

zT
)

where:
• k it the accumulated time it took to a neighbour to

disseminate each block to the node;
• n is the total number of blocks received by a neighbour;
• a is the total number of blocks received;
• y is the accumulated time it took for transactions, sent

to a neighbour, to be accepted in a block;
• z is the total number of transactions sent to a neighbour.
• T is time frame that we use to know what transactions

to take into account when determining the class of a
neighbour

Going over each part of the equation, let us start with
kT

nT
.

This fraction represents the pace at which a neighbour relays
blocks to a node, for instance P. Here the time it takes for
a neighbour to relay a block to P is given by the difference
between the current time and the last time P received a new
block from that neighbour. We add the time it took for P to
receive all the blocks mined in T from a neighbour and then
divide this value by the amount of blocks received, which
gives us an average of time it takes for a neighbour to relay
blocks to P.

The second part of this formula is aT − nT . This allows
the classification to automatically adapt to situations where
nodes that generate a block sparingly do not get a good
classification indefinitely. Because we are subtracting the
total number of blocks received (aT ) by the total number
of blocks received from a neighbour (nT ). If for instance, a
neighbour J does not have a fast connection to a miner or if
J was a miner that stopped mining blocks then J will have
lower priority versus other neighbours, since it is not able
to reliably relay every block to us.

Finally, the thirth part of this equation
yT

zT
is used to cope

with nodes that might not relay transactions. In this fraction,
we divide the sum of the time it took to commit transactions
that P sent to a neighbour (J ) by the number of transactions
that P sent to J. With this, P will get an approximation of the
average time that J takes to commit a transaction. However,
given the large number of transactions that flow through the
network, instead of maintaining timers for all of them, we
only maintain a timer every one hundred transactions. This
prevents overloading nodes with metadata while still giving
a good sample of the general network behaviour.

Algorithm 1 Top neighbours computation
1: function UPDATE NODES CLASS(node to update)
2: scores← [ ]
3: for node in neighbourhood do
4: score← get classification(node)
5: scores.append([score, id])
6: end for
7: sort(scores) // sort by score from lower to higher
8: top nodes← [ ]
9: for i in range(0,max t nodes) do

10: top nodes.append(score[i][1])
11: end for
12: end function

With his in mind, a neighbour has a good classification
if: i) it has a good ratio of time it takes to disseminate
blocks/number of blocks we received from him, ii) a good
ratio of blocks received from him/blocks received and finally
iii) a good ratio of time it took for a transaction to be added
to blocks if we sent it to him.

Given that the classification of neighbours is prone to
change over time, the actual value used to order neighbours
is given by the following sliding average of the classification
presented previously:

classt = (1− α) · classt−1 + α · classT

The α factor exists to avoid nodes that generated a lot of
blocks in the past but no longer do, from having a good clas-
sification forever and to prevent very dramatic fluctuations
in the classifications of neighbours. In our experiments, we
used an α = 0.3 and a T configured to be an interval of four
hours. We used a α = 0.3 because we wanted to give more
importance to that the past of a node than to the present
as sometimes nodes might disconnect from that network or
might not have the luck to mine a block in a longer time
period. We also tried with other values of α, but we found
0.3 to give us the best results. Regarding the four hours of
interval, we also tried multiple values and we obtained better
results with the interval being four hours.

Hence in our protocol, each time a node receives a
block from a neighbour the classification of the neighbours
will be updated using Algorithm 1. The node will iterate
over his neighbours and for each one, it will calculate his
classification using Equation 3.3 and then it will append his
classification together with his ID to a vector named scores
(lines 3 to 6). After the node sorts the scores vector from the
lowest score to the highest score, this means the nodes with
the lowest score will be closest to the index 0 of the vector
(line 7). Finally, the node will iterate from 0 to the max
number of top nodes and append the first max t nodes of
the vector of top nodes (lines 9 to 11). The values for the
variable max t nodes will be discussed in the next section.

In the end, the node will have in its list of top nodes the
set of nodes with the lowest classification. Note that a low
classification means that a node has a good/fast connection
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Algorithm 2 Nodes to send transactions advertisements
computation

1: function NODES TO SEND(tx)
2: if (ip == True and tx.source() == self) then
3: return neighbours
4: end if
5: total← max t nodes+max r nodes
6: if size(neighbours) < total then
7: total← size(neighbours)−max t nodes
8: else
9: total← total −max t nodes

10: end if
11: if total > 0 then
12: r nodes← rand choice(neighbours, total)
13: end if
14: return t nodes+ r nodes
15: end function

to at least a miner or a neighbour of a miner.

B. Skewed Relay

If all nodes followed the protocol and did not crashed or
leaved the network, it would suffice to use the mechanism
described above with the variable max top nodes = 1
to send transactions to only one node, as we would be
sending the transactions to the best neighbour of each node
which would eventually make the transactions appear in a
block. With this we would also be lowering the amount of
duplicated advertisements from 6.6 to 1.

However, even if we do not consider the problem of
node failure and Byzantine behaviour, there is the problem
of commit time. Commit time for cryptocurrencies is very
important as not only a low commit protects the system
against some attacks but also makes the cryptocurrency
more appealing as transactions become confirmed faster. As
mentioned previously, the variance of the mining process
could result in a prolific miner not being able to successfully
mine a block for an extended period of time, precluding
transactions sent exclusively to it from being included in the
blockchain which could make multiple nodes vulnerable to
the double-spending attack. Furthermore it is not guaranteed
which node is going to mine the next block hence, it is
unadvised to send all the transactions of a node to only one
neighbour.

We address this - and simultaneously node failures and
Byzantine behaviour - by sending transactions not only to
the t top nodes but also to r random nodes, as described
in Algorithm 2. The variable ip (ip) indicates that if a
transaction is generated by a node, the node has the option of
either sending it to t plus r neighbours or to all of them. We
implemented this feature to be able to understand if the first
relay had much impact in the commit time of a transaction.

Hence, every time that a node has to relay a transaction it
will start by verifying if the variable ip is enabled or not if
it is it will return the full neighbourhood similar to Bitcoin

(lines 2 to 4). If it is not then the node will start by adding
the values of max t nodes and max r nodes to simply
check if the size of the neighbourhood of the node is big
enough to cope with the value of both variables added. In
the end, the node will have in the variable total the number
of nodes not in top nodes that can potentially be chosen as
random nodes (lines 5 to 10). With this, the node will then
randomly choose total nodes from the set neighbourhood
excluding the nodes in top nodes (line 11 to 13), in the
end, this algorithm will return both sets.

This way we ensure that transactions reach the nodes
with the higher probability of mining a block but also reach
the rest of the network. Hence, ensuring that not only the
transactions are committed in a timely manner but also reach
other nodes lowering the probability of those nodes being
attacked.

This dissemination process can then be configured with
the following variables: max t nodes, max r nodes and ip
to obtain different results in the information dissemination.
We study the impact of these parameters more in depth in
Section IV-B.

C. Adapting to Network Changes

A key aspect of p2p networks is that nodes can leave or
join the network at any time. With this in mind, we designed
an algorithm that adapts to the network in order to keep the
commit time of the transactions while still trying to send as
few messages as possible.

Hence, we designed an algorithm that starts by attributing
a value of size(neighbourhood)/2 to both max t nodes
and max r nodes simulating the Bitcoin dissemination pro-
cess. Then each node monitors the commit time of its
transactions, if this commit goes over or below a specified
threshold the node is going to either increase or decrease
the values of both max t nodes and max r nodes by one.
With this end up with an algorithm that can behave in
the worst case like Bitcoin and in the best case can bring
improvements to the current protocol.

With this, each node is going to invoke Algorithm 3 every
ten minutes as that is the average rate which blocks are
mined. The algorithm starts by assigning to avg time the
average time its unconfirmed transactions are taking to be
accepted (line 3). The time that is taking for an unconfirmed
transaction to be confirmed is calculated by subtracting the
current time with the time of creation of said transaction.
Then the node will check if avg time is bigger than the
constant TM TX CONF (30 minutes).

If it is, this means the node will check if it can increase
the values of both max t nodes and max r nodes, if it can
then is going to increase both and relay the transactions that
took more than 30 minutes to commit (lines 4 to 13).

If the average of all unconfirmed transactions does not
surpass the threshold of the 30 minutes, then the node will
first check if the average time it took to commit its confirmed
transactions in the last hour took less than TM TX CONF
(lines 14 to 15). If so the node will check if it can lower the
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Algorithm 3 Increase or decrease top and random lists
computation

1: function INCREASE RELAY()
2: now ← get current time()
3: avg time← get avg time unconfirmed()
4: timeout← avg time > TM TX CONF
5: space← max t nodes+ 1 ≤ neighbourhood/2
6: cooldown← last inc+ TM TO WAIT ≤ now
7: if timeout and space and cooldown then
8: increase(t, r, 1)
9: had to inc← True

10: update nodes classification()
11: last inc = now
12: relay delayed TX()
13: end if
14: cooldown← last dec+ TM TO WAIT ≤ now
15: if not had to inc and cooldown then
16: avg time← get avg time confirmed()
17: timeout← avg time <= TM TX CONF
18: space← max t nodes− 1 ≤ 0
19: if timeout and space then
20: decrease(t, r, 1)
21: update nodes classification()
22: last dec = now
23: end if
24: end if
25: end function

values of max t nodes and max r nodes by one, if yes it
will do it otherwise it will not do anything (lines 16 to 23).

We have chosen the threshold to be 30 minutes as
that is the highest time registered in blockchain.info for
transactions to be committed. We also have chosen to
increase/decrease always both variables because as we are
going to see in the next chapter when we run our protocol
with max r nodes = 0 we did not obtain the best results,
this way we make sure that both values will never be
lower than 1. We also have chosen to only increase/decrease
both values by one because we have also noticed that
little changes like sending transactions to only one fewer
neighbour already had a great impact.

Regarding the variables cooldown (lines 6 and 14) in the
algorithm they are used because each time max t nodes
and max r nodes are changed the node will not be able
to change these values in the next 2 hours to prevent
fluctuations in these values. Furthermore, every time a node
increases max t nodes and max r nodes it will not be able
to decrease these values in the next 4 hours in order to
prioritise resilience over performance.

IV. EVALUATION

To evaluate the proposed approach, we built an event
driven simulator that models the broadcast of transactions
and blocks in the Bitcoin network. We decided to implement
our own simulator because all the simulators that we found

were either outdated or were not working 2.

A. Simulator Tuning

To configure our simulator such that it reproduces faith-
fully the original protocol, we extended the Bitcoin Core
client, the most used Bitcoin client to log metrics about the
messages exchanged between clients. The metrics logged
were the following: i) transactions advertisements; ii) re-
ceived transactions; iii) transactions present in compact
blocks that the node had to request to be able to rebuild
the block. We deployed two instances of this client in two
distinct physical locations for a whole month and used the
metrics logged by these two clients to tune our simulator.
Furthermore, we also used information publicly available on
the website https://blockchain.info/ to determine the number
of transaction generated, the distribution of blocks generated
by miners and the average transaction size. With all these
metrics we implemented the original protocol, and then we
added our changes to the protocol. We experimentally tuned
our simulator so that the results observed were the same as
the ones in the real client. The network model that we used
in the experiments of Section IV-B were composed solely
of nodes that followed the protocol accordingly.

Due to the complexity of the protocol, simulating the full
network resulted in resource intensive simulations that lasted
for days. To overcome this, we scaled down the size of
the simulated network a follows. First, we ran the original
protocol with 6000 nodes and with 625 nodes and compared
the metrics discussed belong. The results we obtained were
equivalent for both network sizes hence, for the rest of
this section we consider a network size of 625 nodes. This
proportional scaling between 6000 nodes (size registered
when we started experimenting) and 625 nodes, allowed
us to quickly explore different possible solutions and run
multiple instances of each test. The results presented are an
average of 3 independent runs that correspond to 34 hours
in real time. We discarded the first and last 5 hours of each
run in order to study the system in a stable state.

B. Skewed Relay Impact

We started by exploring the different possible solutions to
reduce network usage without having a negative impact on
the system. In all experiments below, we use the following
notation: Tn where n specifies the value of the variable
max t nodes; and Rn specifies the value of the variable
max r nodes present in the previous algorithms. Note that
for these experiments we did not used Algorithm 3 because
we wanted to determine the best values for the aforemen-
tioned variables.

Initially we tested with multiple combinations of n =
1, 2, 3, 4 for both T and R. After these preliminary experi-
ments, we observed that for values of n = 3, 4 the results
were practically the same as the results without our ap-
proach. However, with n = 1, 2 we observed a considerable

2Some examples https://github.com/shadow/shadow-plugin-bitcoin and
https://github.com/arthurgervais/Bitcoin-Simulator
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Figure 1. Blocks generated.
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Figure 2. Percentage of transactions committed.

reduction in the number of duplicated advertisements. These
results also support our logs in the real client, where the
average number of duplicates was 6.6. With this in mind,
for the rest of the experiments, we considered only the
combinations of: T2 R2; T2 R1; T2 R0; T1 R1; T1 R0.
Additionally, for each configuration, we also experimented
with both values of the variable ip.

Figure 1 shows, for each configuration, the amount of
blocks that were generated during each experiment, while
Figure 2 shows the percentage of transactions added to
blocks. As it is possible to observe, the simulation generated
the expected amount of blocks for a day (≈ 144) and
committed all the created transactions (≈ 100%). This shows
that, for every configuration, all transactions reached at least
a miner that added them to a block.

We also measured the average transaction commit time
for each configuration, depicted in Figure 3. The horizontal
lines represent the highest and lowest average time it took
for a transaction to be committed in Bitcoin. We can clearly
see that both configurations T2-R0 and T1-R0 are not good
enough to achieve a commit time comparable to Bitcoin.
This shows that sending transactions for at least one random
node alongside the top nodes has a great impact in the
commit time as previously discussed in Section III-B.

Figure 4 shows the cumulative distributed function of
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Figure 3. Average time it takes for a transaction to be committed.
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Figure 4. Cumulative distributed function of the time it takes for a
transaction to be committed.

the time took to commit all the transactions, hence, it is
a different perspective of Figure 3. We can observe sending
a new transaction it to all the neighbours (ip=T) has a very
low impact in the time it takes to commit a transaction. We
attribute this to the fact that the time it takes for a transaction
to reach all the miners is orders of magnitude (few seconds
versus dozen of minutes) lower than the rate at which blocks
are being generated.

With the impact of each configuration in the transaction
commit time and number of transactions analysed, we now
focus on the impact on reducing network usage.

Figure 5 shows ratio between the total number of mes-
sages sent in to the same amount in the Bitcoin network.
As expected, the configurations with a higher amount of
savings were the configurations that did not relay to random
nodes. This happens because when we send a transaction to a
random node there is a higher chance that that node still does
not have that transaction and will request it. Unfortunately,
as we have seen previously, both these configurations are not
viable because both take very long to commit transactions.
Figure 6 shows a different perspective by depicting the sav-
ings in the total amount of information transmitted which,a s

7



 0

 20

 40

 60

 80

 100

Bitc
oi
n

T2−
R
2

T2−
R
1

T2−
R
0

T1−
R
1

T1−
R
0

M
e

s
s
a

g
e

s
 s

e
n

t 
(%

)

Configuration

Initial push = True Initial push = False

Figure 5. Total number of messages sent.

 0

 20

 40

 60

 80

 100

Bitc
oi
n

T2−
R
2

T2−
R
1

T2−
R
0

T1−
R
1

T1−
R
0

A
m

o
u

n
t 

o
f 

in
fo

rm
a

ti
o

n
 

 s
e

n
t 

(%
)

Configuration

Initial push = True Initial push = False

Figure 6. Amount of information sent.

expected, follows a similar pattern to Figure 5. We can also
see that the savings from Figure 6 are not as big as the ones
from Figure 5. This happens because the advertise messages
that we avoid sending are not very big in size. However,
processing those spurious incurs an additional cost to the
nodes.

By analysing these results, we can conclude that the most
promising configuration is T1-R1 with ip=False because not
only it achieves relevant savings (reduction in the number
of messages sent in 41.5% and reduction of the amount
of information sent in 10.2%) but also it preserves the
properties of the original Bitcoin.

C. Effect of Adaptation
To determine the best possible configuration we used a

stable network, where miners were always the same nodes.
However, as in any large network, Bitcoin is prone to
changes. We now study the adaption policy introduced in
Algorithm 3. Initially, all nodes send advertisements to all
their neighbours as in the regular Bitcoin. Then throughout
the simulation, the algorithm will progressively determine
the best Tn-Rn configuration for each node. We performed
three experiments, one where we did not make any changes
to the network, another where we change two miners in
the network at 12 hours into the simulation and finally a
third one where we changed all the miners at 12 hours

 0

 10

 20

 30

 40

 50

5 1012 15 20 25 30 35 40 45

Highest time

Lowest time

A
v
e

ra
g

e
 c

o
m

m
it
 t

im
e

 (
m

in
u

te
s
)

Time (hours)

Same miners
Two different miners

Different miners

Figure 7. Average commit over time.
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into the simulation. With these experiments, we want to
determine if our solution is able to adapt to the network
changes and preserve the commit time while still sending as
few messages as possible.

Figure 7 shows the average commit time over the pe-
riod of time simulated. It also shows the two horizontal
lines that were in Figure 3, delimiting the minimum and
maximum observed Bitcoin commit time. Figure 8 displays
the percentage of nodes in each configuration at the end
of the simulation for the three runs. We can drawn several
interesting configurations. First, we can see that if we are
in the presence of a stable network, then our solution is
going to start adapting to the network and converge to the
configuration that we previously deemed ideal (T1-R1 ), as
seen in Figure 8. Secondly, we can conclude that if there
are slight changes to the network, then the average commit
time of our solution is going to deteriorate a little bit, but
soon after the algorithm will increase the size of T and R
to cope with the changes and the average commit time will
once again converge to more regular times. Finally, if our
solution is confronted with drastic changes to the network
it will not be able to maintain the current commit time,
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given that at 12 hours into the simulation most nodes were
configured to T1-R1 which is not resilient enough for these
cases. We note however that such sudden shift in mining
power is unlikely to happen. Regardless, after some time
our approach will start converging to the desirable stable
configuration.

V. RELATED WORK

In Bitcoin, the dissemination of information is one of
the most important mechanisms for the network to function
properly. Multiple studies have focused on analysing the
protocol of information dissemination and the problems it
currently has that may lead to forks in the network [4],
[5], [6]. In [4] the authors shed some light to a problem
that nowadays seems to not happen as frequently in Bitcoin.
The problem was eclipsing of information this happened
when two nodes were able to mine a block at the same
height. Then both this blocks would be relayed through
the network until they reached a node that already had the
previous one. This would make the node not relay the other
block hence, dividing into two parts. Currently, this seems
to have been fixed with the introduction of compact blocks
that accelerated the process of dissemination one of the
suggestions in [4] to solve the problem previously described.

Other works have focused on how to explore vulnerabil-
ities in the current dissemination mechanisms in order to
benefit the attacker or put the victim in a disadvantageous
situation [7], [8], [9], [10], [11]. For instance, delaying
the dissemination of information could put miners at a
disadvantage if the miner retaining the information already
has a block mined. Other example is the attack described
in [10] where a set of nodes could isolate a node by
disseminating to him multiple fake addresses, that would
lead that node do discard valid addresses then, once the
node had to terminate its current connections it would be
only left with addresses of nodes that either did not exited
or were attackers.

Regarding previously developed work with similar objec-
tive as our, we only were able to find [12] where the authors
propose a new protocol named Bitcoin Clustering Based
Ping Time, BCBPT is a solution that aims to increase the
proximity of connectivity among nodes in the Bitcoin net-
work based on round-trip ping latencies. Since currently, in
the Bitcoin network, a node connects with nodes regardless
of any proximity criteria. The main objective of this article
is to lower the overhead in transaction verification which
makes some nodes of the systems vulnerable to double spend
attacks

The dissemination mechanism already has gone through
multiple changes since its introduction [1] in part to mitigate
known attacks. Some of these changes can be found in
multiple Bitcoin Improvement Proposals [2], [13], [14] but
several significant changes required a detailed analysis of
the source code as documentation is scarce of non-existent.

VI. CONCLUSIONS

Despite the multiple iterations and improvements that
have been done to the Bitcoin dissemination protocol since
its introduction, there are still some aspects that need to be
improved. As Bitcoin becomes more popular and new clients
join the system, it is fundamental to have an efficient and
robust dissemination substrate for the network to function
properly. In this dissertation, we took some steps in this
direction by improving the existing algorithm to do a more
selective dissemination. Our improvements allow to save,
10.2% of the current bandwidth used and 41.5% of the
number of messages exchanged without compromising the
robustness of the current approach.

As future work, we plan to leverage more detailed mem-
bership information to build more efficient dissemination
paths.
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