Unobservable Covert Streaming for Internet Censorship Circumvention
(extended abstract of the MSc dissertation)

Diogo Miguel Barrinha Barradas

Departamento de Engenharia Informatica

Instituto Superior Técnico

Advisors: Professors Luis Rodrigues and Nuno Santos

Abstract—This work studies the possibility of using the
encrypted video channel of widely used video-conferencing
applications, such as Skype, as a carrier for an unobservable
covert channel that can be used to access arbitrary information
on the Internet. Such channel can be used by citizens living
in countries ruled by repressive regimes to exert their civil
rights without being detected and/or blocked by a censor.
Even if the video is encrypted, a covert channel may still be
detected if it induces statistically relevant changes in the traffic
pattern of the application. We propose and evaluate different
alternatives to encode information in the video-stream, in order
to maximize the available throughput while preserving the
characteristics of the unmodified stream. We have implemented
a prototype of our system, named DeltaShaper, that offers a
data-link interface and that can support any protocol that runs
over TCP/IP. Our results show that it is possible to achieve a
throughput of 0.4 kB/s with no significant impact on the stream,
which allows to run standard applications such as FTP, SMTP
or a simple web client.

I. INTRODUCTION

Today, most electronic communication over the Internet
can be controlled by governments and/or by a few cor-
porations. This allows repressive regimes to monitor and
control the access to the Internet by employing several
censorship techniques. As a result, citizens may be prevented
from exercising their civil rights, for instance they may
be prevented from accessing information, communicate, or
express opinions freely[1].

In certain cases, to prevent access to specific sources of
information, the censor employs blacklisting techniques in
which it instructs ISPs to block direct connections to these
sources. To circumvent such restrictions, a typical strategy
consists in accessing this information via a trusted proxy.
However, this is only viable as long as the proxy address is
not public and the connections to it cannot be easily flagged
as suspicious. In order to prevent all proxies addresses to
become public, Tor [2] has suggested the use of bridges,
proxies which addresses are not publicly distributed, to
access its overlay network. Even so, if no explicit effort is
made to obfuscate the traffic towards a bridge, it may exhibit
patterns that make it easily recognizable [3]. Unfortunately,
the task of obfuscating the traffic is a challenge by itself.
If the resulting pattern does not match any known protocol,
the flow can also be deemed as suspicious. Therefore, for
the obfuscation to succeed, the resulting traffic should mimic

existing protocols, ideally protocols that a censor may not be
willing to block. But protocol mimicking can be extremely
hard to implement [4] and needs to be adjusted every time
the protocol is updated.

Fortunately, even the most oppressive regimes cannot
afford to block all electronic communication channels with
the outside world, as these channels may be instrumental to
preserve the economy of the country and the sustainability of
the regime itself. In particular, there is evidence that several
countries do restrict access to information but maintain
operational widely used services such as Skype. In fact, only
in extreme scenarios, governments can afford to completely
block the access to the Internet [5].

Based on the observation above, in the last years a num-
ber of authors have been exploring a promising approach,
that consists in providing access to rightful information by
covertly tunneling data through protocols that are unlikely
to be blocked by the censor. Here, the assumption is that it
is possible to implement the tunneling in such a way that
the traffic pattern of the carrier protocol is not modified in
an observable way. Examples of this line of work include
FreeWave[6], which encodes network traffic into acoustic
signals sent over VoIP connections, Facet[7], which enables
clients to secretly transmit censored videos over a Variable
Bit Rate (VBR) stream, and CovertCast[8] that transmits the
content of blocked websites via modulated images of live-
streaming feeds.

This paper follows this line of work and aims at circum-
venting some significant limitations of previous approaches.
In fact, we argue that an ideal system should combine the
following features: i) support the transfer of arbitrary data;
ii) support flexible communication patterns (in order to allow
the execution of a wide range protocols such as HTTP, FTP,
SMTP, etc); and iii) be robust against passive attacks (such as
traffic analysis) and active attacks (such as packet dropping).
However, previous systems can address some but not all
these requirements simultaneously. FreeWave can transfer
arbitrary data but is prone to several passive and active
attacks, Facet only supports the transmission of video, and
CovertCast only supports unidirectional multicast.

The goal of our work is to leverage the basic principle of
video morphing and extend it in order to address the three
requirements listed above. Although this task may seem
conceptually simple, there are several technical challenges

involved. By embedding arbitrary data on a carrier videocall,
the properties of the resulting stream change, which may
render the stream observable to the censor. Moreover, for
efficient frame transmission, video-conferencing software
relies on lossy video compression algorithms which will
introduce decoding errors. We address these challenges by
using an encoding technique that is robust to noise and that
can be dynamically tuned to match to the underlying network
conditions, such that it maximizes the achievable throughput
without compromising unobservability.

In this paper we present DeltaShaper, a system that
enables the encoding of arbitrary data frames in an en-
crypted video stream, by effectively embedding payload
data into carrier streams (the current prototype is based
on Skype). DeltaShaper is designed with the objective of
establishing a data link layer between a given video-call
end hosts, enabling the forwarding of network layer packets
between them. This allows for the use of several higher
level protocols such as Telnet or HTTP while delegating
the responsibility for the reliability of the connection to
TCP/IP. DeltaShaper introduces several techniques that al-
low for the preservation of unobservability of covert streams.
We propose and evaluate different alternatives to encode
information in the video-stream, in order to maximize the
available throughput while preserving the characteristics of
the unmodified stream. We have implemented a prototype
of our system that offers a data-link interface and that can
support any protocol that runs over TCP/IP. Our results show
that it is possible to achieve a throughput of 0.4 kB/s with
no significant impact on the stream, which allows to run
standard applications such as FTP, SMTP, or a Web client.

II. RELATED WORK

Numerous practical solutions have been proposed over the
last years to address the problem of Internet censorship. A
common strategy for censorship circumvention is to leverage
proxy-based traffic re-routing, oftentimes combined with
digital steganography techniques. Notably, decoy routing
systems [9] are based upon routers deployed within ISPs
which are able to recognize steganographic marks hidden
from the censor and divert the traffic to the client’s desired
location. However, it is often difficult to hide the proxies
from the censor and, once proxies are detected, they can be
blocked in a similar manner as the original source.

An improved class of systems helping in censorship
circumvention aim to obfuscate covert traffic so that it
cannot be linked to the underlying application layer pro-
tocol. Such technique is termed traffic morphing[10]. For
instance, SkypeMorph [11] mimics the statistical properties
of Skype video calls. Unfortunately, it is hard to mimic
all aspects of a protocol, including responses to exceptions
such as malformed packets or message losses, which makes
the approach vulnerable to active attacks. Marionette [12]
attempts to solve this issue by enabling the control of several
aspects of protocol imitation through the composition of
probabilistic automata. Still, the mimicking of proprietary

protocols may require continuous reverse engineering efforts
in order to keep up with protocol updates.

Some censorship circumvention systems leverage a
tunnel-based staged communication approach, where an
oblivious server relays the communication between the client
and server of the system. In SWEET [13], covert traffic
is relayed through encrypted or steganography-protected
email messages that are temporarily staged on standard
mail servers. CloudTransport [14] adopts a similar principle,
but uses public cloud storage services for covert message
forwarding. The meek system [15] leverages domain fronting
to tunnel traffic over HTTPS connections to allowed hosts,
while establishing a covert connection to a prohibited host.
Castle [16] and Rook [17] provide an alternative approach to
exchange covert messages over a publicly available service,
namely Real-Time Strategy (RTS) games. Most of these
systems, however are vulnerable to various attacks, such as
denial of service or traffic analysis techniques.

A different tunneling approach leverages existing mul-
timedia streaming protocols to enable communicating be-
tween two parties engaging in censorship circumvention.
FreeWave [6] leverages VoIP connections to tunnel Internet
traffic, allowing for uncensored web browsing. However, this
system is vulnerable to passive attacks. In particular, the
detection of FreeWave streams is based on the observation
that the packet length distribution of the generated network
traffic containing the covert message is nothing similar to
that of a recognizable language, expected to be found in
an actual conversation. Furthermore, a censor can thwart
FreeWave when it is used over VBR codecs. This is achieved
by launching active attacks to prevent FreeWave’s modem
from synchronizing, rendering the covert channel inviable.

When compared with FreeWave, Facet [7] provides a
greater resilience to active attacks. This system leverages
video conferencing connections such as Skype in order to
tunnel censored videos through regular videocalls. Facet
employs video morphing, a technique developed to ensure
that the network packets generated by the video conferencing
software do not directly reflect the characteristics of the
censored video, but approximate those of regular video
calls instead. To this end, Facet embeds the censored video
in a portion of each frame, filling the remaining space
with a chat video. This approach provides active attack
resistance by design, since any perturbation in the network
will cause exactly the same effect on a regular or covert
video transmission. A censor who tries to completely disrupt
Facet from functioning will block a large percentage of
legitimate video conferencing calls. However, Facet is only
able to serve video content which limits the applicability of
the system to other types of communication.

CovertCast [8] leverages live-streaming feeds to transmit
the content of blocked websites by modulating the respective
data into images. These images are aggregated in order to be
transmitted through live video feeds, for instance, resorting
to video-streaming websites such as Youtube. In turn, the
client component demodulates images served through the

(c) Covert Frame

Payload
Block

(b) Payload Frame

Figure 1. Blending payload into carrier frame.

live stream, extracting and saving the blocked web content.
Although CovertCast data modulation is resilient against
traffic analysis on such video-streaming platforms, it is only
able to provide a satisfactory throughput when implementing
a one-way communication channel. This means that the sys-
tem is unable to support interactive communication and can
only be used to download censored content. Furthermore, it
requires operators of CovertCast servers to set up multiple
live-feeds to serve different content.

III. THREAT MODEL

We assume the existence of applications that use en-
crypted video-streams, such as Skype, that the adversary is
not willing to block. Therefore, the adversary will only block
or disrupt those streams if it can observe that the stream is
being used to convey some covert channel. In order to detect
covert channels, we assume that the censor can resort to the
tools that are typically available to a state-level omniscient
adversary, i.e., the censor is able to observe, store, interfere
with, and analyze all the network flows between the parties
that are engaged in the communication. However, we assume
that the adversary is unable to control the software installed
on end-users computers. Thus, the communication endpoints
where clients run are deemed trusted.

Furthermore, the adversary has the power to perform
deep packet inspection but is computationally bounded, and
cannot break the underlying cryptographic primitives used
to cypher the packet’s content. Also, we assume that the
videoconferencing provider (i.e., the Skype service provider)
will not collude with the adversary, for example by allowing
the adversary to inspect rendered video content at the
communication endpoints. Therefore, the adversary cannot
detect the covert channel by directly observing the content
of the stream. It may however perform statistically analysis
on the traffic patterns of each flow (in face of different
network conditions) and detect outliers. For that purpose,
the adversary will use state-of-the art techniques to classify
streams and to rank the similarity among different flows.

IV. DESIGN

Our goal is to embed a (bi-directional) covert data channel
in a regular Skype stream in a way that it cannot be
tagged as disallowed by the adversary. For establishing the

covert data channel, DeltaShaper depends on a upstream and
downstream pipeline. On the sending side, the transmitter
receives the payload and encodes it in a video stream
that is fed to Skype using a virtual camera device. Skype
transmits this video to the remote Skype instance and the
received stream is captured from the Skype video buffer.
A decoder then extracts the payload from the video stream
and delivers it to the server application. To make the system
as general as possible, the architecture exposes a data-link
level protocol to the upper layers, such that an IP packet
can be accepted, encoded, decoded, and delivered remotely
using this technique. As a result, the system can support any
TCP/IP application that can tolerate low throughput/ high
latency links.

A. Data Encoding and Decoding

Given that a video stream is a sequence of frames, that
each frame is composed by a set of pixels, and that each
pixel can be defined by RGB components, one needs to find
the best way to encode the data bits in the available pixels.
According to the XWD format specification that is used to
store screen dumps created by the X Window System, an
RGB encoded pixel takes 24 bits, allowing the encoding
of 16,777,216 different colors. Thus, in theory, one could
encode 24 bits in each pixel. Assuming a 640x480 frame
(VGA resolution), it would be possible to encode, at max,
7372800 bits in a single frame.

However, there are some reasons that prevent such an

encoding scheme from functioning in practice. Firstly, video
processing may modify a frame’s pixels in multiple ways:
change the colors of each pixel, thus altering the information
being transferred; omit differences among adjacent pixels,
loosing all information encoded in those pixels. Secondly,
it is necessary to preserve unobservability. If all pixels of a
frame are used to encode data to the maximum capacity, the
resulting image complexity would be significantly different
from a typical image transferred in Skype, where many
pixels are similar. This would cause the traffic signature
of the resulting Skype stream to be extremely different
from a that of a “normal” Skype stream. To deal with such
conflicting trade-offs, a data encoding scheme based on two
basic ideas is proposed:
1. Blend synthetic payload video into ‘“normal” Skype
video: The covert data encoding scheme generates trans-
mitted video frames (covert frames) from the combination
of two components: carrier frames and payload frames.
Carrier frames are taken up from a pre-recorded Skype
call. Payload frames consist of synthetic video frames that
encode the application data to be transmitted to the receiver.
Payload and carrier frames are then blended together into
covert frames and passed over to Skype. Figure 1 shows
an example of how a (a) carrier frame and a (b) payload
frame are blended into a (c) covert frame. The payload frame
is overlapped to top-left corner of the carrier frame. The
goal of carrier frames is to mimic a realistic Skype call by
modulating the network stream observed by the censor thus
preserving unobservability.

2. Support tunable payload frame encoding: Each payload
frame encodes N bits of the covert message on a payload
block. Each payload block is a synthetic image that consists
of a grid of cells. Each cell consists of a fix-sized area of
contiguous pixels featuring the same color. The color code is
used to encode b, bits of information of the payload block.
The total amount of bits that can be encoded per frame N
is then given by: N = b, X n., where n. is the number of
cells per frame.

The communication throughput T is given by N X 7,
where 7, is the rate of payload frames sent per unit of
time. The encoding scheme is then defined by the following
parameters: size of payload frame in pixels (sp), size of
cells in pixels (s.), color encoding in bits (b.), and payload
frame rate (r,). A data encoder is represented by the tuple
St (Sp,Se, be,Tp), for example (160 x 120,4 x 4,1,3).
To decode a payload block, the receiver must know which
encoding parameters were used. For this reason, the sender
appends these parameters into a fixed-format band atop the
payload frame (payload header).

Reducing the number of bits to represent color codes
makes the system more resilient to per-pixel color change
introduced by the Skype encoding pipeline whereas the
increase of the cell size helps tolerate loss of information
between adjacent pixels as a result of video compression. By
properly tuning DeltaShaper encoding parameters one can
control the amount of information blended into the carrier
video which will determine how close from a “normal”
Skype call the resulting covert video will be.

B. Preserving the Skype Traffic Signature

“Normal” Skype streams are designated as regular
streams. A Skype stream is regular it if results from a
legitimate video-conferencing call between Skype users car-
rying no covert messages. In such cases, users normally
stand in front of the camera and move sparingly as they
speak. In contrast, the resulting traffic pattern is expected to
be quite different if Skype is used for streaming an action
movie, for instance. In such cases, frames will change more
frequently and extensively causing Skype’s video encoding
to reflect such changes. To express this intuition that regular
calls tend to follow common pattern, while inevitably having
some differences, a stream is considered to be irregular if
it differs by more than a given threshold A from known
regular streams, in which A is obtained by a given similarity
function o. Put more formally, considering sp to be a
set of known regular streams, f a feature function of the
stream (e.g., packet length distribution), and s¢ an arbitrary
stream (that may contain a covert channel), s¢ is said to be
indistinguishable from sp if:

o(f(sclP]), f(sr)) <A

Therefore, the frame encoding parameters P for s¢ must
be chosen in such a way that the resulting covert stream
obeys this condition; to meet this goal, the following steps
are taken:

1. Find an effective feature function (f): A feature
function extracts some relevant quantitative attribute out
of the packet traces that constitute a stream. Through ex-
perimental evaluation, the frequency distribution of packet
lengths (f;) was found to be effective at characterizing a
given stream pattern in Skype. Similar reasoning was proven
to be successful at differentiating Skype streams from Tor
streams [11]. The packet length of the stream depends on
both the input video and compression applied by Skype.
Therefore, blending payload frames into the carrier frames
will alter the packet length distribution. An alternative
function based on the 2-gram distribution of packet lengths
has enabled to differentiate regular Skype calls from the
transmission of YouTube videos over Skype [7]. In the con-
text of DeltaShaper, this function produces similar results as
f1. Alternative feature functions based on the inter-packets’
arrival time are also considered in the system’s evaluation.
Feature functions based on the packets’ content were not
considered since Skype-generated packets are encrypted.

2. Find an effective similarity function (0): A similarity
function calculates the difference between two feature func-
tions. Given that f;, which outputs the frequency distribution
of a stream’s packet length, was adopted, there is a need to
find metrics that calculate the similarity between two proba-
bility distributions. Previous work has adopted the 2-sample
Kolmogorov-Smirnov test [11], [17]. Informally, this test
quantifies the maximum vertical distance between the empir-
ical cumulative distribution functions of two given samples.
However, the Earth Mover’s Distance (EMD) [18] was found
to yield better classification results and was selected as sim-
ilarity function. Intuitively, EMD(f;(sr), fi(s¢)) represents
the total amount of work that is necessary to undertake in
order to transform the packet length frequency distribution
of a regular stream sp; into the packet length frequency
distribution of s¢.

3. Define a set of reference streams (sz): Now that
f and o have been defined, a set of known regular
streams must be fixed to serve as reference streams around
which DeltaShaper’s generated covert streams will compare
against. Such regular streams will correspond to streaming
several carrier videos that may be used by DeltaShaper in
the payload blending process (as shown in Figure 1-a), and
can be obtained by recording the packet trace of real video-
conferencing Skype calls, for example.

4. Compute the similarity threshold (A): The similarity
threshold A aims to set a bound to the differences that
one can expect to find between legitimate regular Skype
calls. To determine this value, an empirical approach is
undertaken. This approach consists of creating a training set
of N legitimate Skype call videos and record the packet
length distribution of the resulting test stream s;, where
0 < ¢ < N. Then, the average similarity between each
test stream and every other regular stream is calculated. The
threshold value A can then be assigned in several ways,
for instance: the largest difference verified between multiple
regular streams; the average similarity between all regular

Client Endpoint ¥

Server Endpoint

(Snowmix)

Kernel
Module *
VETHO
10.10.10.11 Linux Kernel | FFMPEG

Linux Container Encoder Payload Carrier
F
- Adapter Frame Queue rame - Receiver Payload Server
Cl_lent_ * + > Process Fragment Pool Application
Application
Payload Payload Carrier
Encoder Streamer Streamer
VETH1 7y * * Virtual Camera Display Decoder Localhost
10.10.10.10 IP Packet /devivideoO Framebuffer Thread interface
Queue
| Stream Blender

Figure 2. Architecture of the DeltaShaper prototype.

streams, plus a multiplicative factor based on the standard
deviation. Furthermore, A must be assigned dynamically, as
Skype’s video encoder will adapt its bit rate to the current
network conditions.

5. Obtain a valid encoding selector (P): The final step
consists of determining valid sets of parameter instances (P)
to the payload encoding scheme. A specific instance of P is
called encoding selector. To be valid, an encoding selector
must produce unobservable streams. Encoding selectors that
satisfy such condition can be found by exploring the space
of P generating a training stream s¢[P] and verify that s¢
is indistinguishable from sg. For checking whether s¢ can
be identified as a regular stream, its similarity value § can
be obtained by computing the average similarity between s¢
and all regular test streams in sr. More precisely:

N-1
+ Zo EMD(f;(sc[P]), fi(sgi)) = 0, P is valid if § < A

C. Adaptation to Network Conditions

As Skype streams’ distributions that result from playing a
given (carrier) video greatly depend on the specific network
conditions under which the transmission has occurred, a
single reference stream set s and respective threshold A
cannot be permanently fixed and hard-coded in DeltaShaper.
This observation brings two consequences:

The reference stream set and the similarity threshold must
be set dynamically: In order to preserve the properties of
unobservability on a given connection, it is necessary to
adopt a reference stream set (sg) and threshold value (A)
according to the specific network conditions. Furthermore,
it must be taken into account that network conditions may
change over time, either due to contingencies of the network
infrastructure or to active attacks launched by the censor.

The encoder selector must be set dynamically: In re-
sponses to changes in network conditions, it may be nec-
essary to change the frame encoding parameters in order
to preserve a stream’s indistinguishability. In the interest of
maintaining unobservability, DeltaShaper employs a period-
ical calibration procedure, where both endpoints can adjust
data encoding parameters. Due to lack of space, the details
of the calibration procedure are omitted in this document.

V. IMPLEMENTATION

A DeltaShaper prototype was built for Linux. The archi-
tecture of the prototype is depicted in Figure 2. Several
components implement the client and server pipelines of
DeltaShaper. Some of these components were built from
scratch in C++ and Python; others are based on existing
tools, identified below. To build DeltaShaper, several chal-
lenges were faced at different levels: network interfacing,
video processing, and Skype interfacing.

1. Network interfacing: The network interfacing between
DeltaShaper and the client / server application must be per-
formed without changes to the application. For this reason,
complementary techniques were adopted when building the
client and server endpoints. At the client side, the prototype
takes advantage of both Linux’s network namespaces and
the netfilter packet filtering framework in order to build
the backend of DeltaShaper’s data link layer. The outgoing
IP packets are captured by a kernel module using netfilter
and handled by a user-space program which encodes and
transmits them over Skype. At the server side, IP packets
are decoded and routed to the “localhost” interface to be
delivered transparently to the server application.

2. Video processing: For efficient video synthesis at the
client side, DeltaShaper’s payload encoder takes each IP
packet, generates the corresponding payload frame, and
forwards this frame to the payload streamer. The payload
streamer is a user-level process that feeds payload frames
into Snowmix, a live stream video mixer that is used to over-
lay the payload video on a dummy carrier video. Snowmix
outputs the covert video which is then sent through Skype
to the receiver. At the server side, the reverse decoding
operation is implemented by a receiver process. Internally,
the receiver process collects covert video frames from Skype,
extracting the payload block out of the frames, and sends the
resulting IP packets to the Linux kernel.

3. Skype interfacing: Lastly, it is necessary to interface
with Skype without modifying the Skype client software.
For this purpose, Snowmix’s output is routed to a virtual
camera device which acts as Skype’s input source. This
video routing operation is supported directly by Snowmix
when coupled with the FFMPEG video encoding tool. At
the receiver’s endpoint, DeltaShaper captures the received

images that are rendered by a Skype client on a virtual
display. DeltaShaper relies on a frame thread of the receiver
process to periodically launch the XWD tool to obtain
a screenshot of the virtual display. The frame thread is
calibrated so that the polling frequency is higher than the
payload transmission rate. This condition ensures that no
payload frames are lost.

A. Message Format

To support error correction and packet fragmentation, a
simple message format protocol was specified. Essentially,
this protocol maps messages between the high-level IP layer
(IP packets) and the low-level frame layer supported by
DeltaShaper (payload blocks). Due to lack of space, this
document omits a full description of the messages’ format.

B. Error Recovery

Due to the effects of the video compression algorithm
employed by Skype, the recovered payload block may
include bit errors. Thus, a general payload block layout was
designed in order to support configurable error correction
codes (ECC). In the current prototype, DeltaShaper adopts
the Reed-Solomon [19] ECC. It employs a commonly used
code denoted as (n, k) = (255,223), where n corresponds
to 255 bytes of a data symbol, out of which k = 223
bytes consist of application data and the remaining 32 bytes
encode parity bit symbols. This code can correct up to 16
symbol errors per symbol block.

VI. EVALUATION

To evaluate our system, we focus on the following main
goals: test the effectiveness of EMD and A threshold metrics
in characterizing Skype streams (Section VI-B), assess the
ability of DeltaShaper to generate unobservable covert Skype
channels based on such metrics (Section VI-C) and measure
the performance of DeltaShaper channels while preserving
unobservability (Section VI-D). We also explore the impact
of network perturbations in a censor’s ability to distinguish
between regular and irregular streams (Section VI-E). Then,
a study over the use of alternative traffic features and
similarity functions to classify Skype streams is presented
(Section VI-F). Lastly, we evaluate the end-user experience
of DeltaShaper for several use cases (Section VI-G).

A. Experimental Settings

The system’s experimental evaluation was performed on
two 32bit Ubuntu 14.04.4 LTS virtual machines (VMs) with
8GB RAM and 4 virtual Intel Core 2 Duo T7700 2.40GHz
CPUs. Each VM runs an instance of Skype v4.3.0.37 and
DeltaShaper acting, respectively, as caller and callee of
video-conferencing calls. The native netem Linux network
emulation functionality was used to enforce limitations over
the network conditions between the VMs.

In order to characterize regular video-conferencing
streams, 30 videos representative of actual videocalls have
been selected. These videos are used as training set for regu-
lar streams. Such videos generally exhibit low movement as

1.0 T 1.0 y
EMD = 0.600 EMD = 0.039
0.8} 1 0.8}
w 0.6} 1w 0.6F
[a)] [a)]
O 0.4} 10 0.4|
0.2+ [Reference Chat Stream || 0.2+ [Reference Chat Stream ||
C =1 Reference Chat Stream L =1 Different Chat Stream
0.0 - . . . 0.0 . . - .
0 300 600 900 1200 0 300 600 900 1200
Packet Length (Bytes) Packet Length (Bytes)
LOreMp="0.072 p LOreMp=0113
0.8} < 1 0.8} ‘,"
w060 g 1w 06 oo o
[a)] [a)]
O 04t 19 0.41
0.2} [Reference Chat Stream |/ 0.2} [Reference Chat Stream |/
C =1 Irregular Stream 1 C =1 Irregular Stream 2
%-05""300 600 900 1200 °% 300 600 900 1200

Packet Length (Bytes) Packet Length (Bytes)

Figure 3. Packet length CDF of sample streams.

users typically sit in front of a computer, moving sparingly
as they speak. These videos have not been edited and are
free of watermarks or other visual artifacts. The training
set for irregular streams consists of 30 YouTube videos,
involving more dynamic movement, where both rapidly
changing scenes and artifacts introduced by video editing
software are common. The duration of each video sample
is 30 seconds. Samples are captured after 10 seconds of the
initial call establishment. For these experiments, the calls’
audio packets carry data representing silence.

B. Characterization of Skype Streams

Firstly, it is studied whether Skype calls exhibit measur-
able patterns that allow the differentiation between regular
and irregular calls. This question is of utmost importance
since such patterns may be used by a censor to detect
suspicious videocalls (i.e., irregular ones) and further block
them. For conducting the experiment with reduced interfer-
ence, the four test streams have been transmitted in a one-
way Skype video-conferencing call. The data in Figure 3
indicates that such patterns do exist. It shows the cumulative
distribution function (CDF) of packet lengths for each of
the four test Skype streams, respectively represented in a
different plot: (a) the stream of an actual videocall which is
taken as reference stream; (b) a stream of a regular call from
a different user; and two irregular streams corresponding to
(c) a football match and, (d) a music concert. Each plot
represents the distribution of the test stream along with
the packet length distribution of the reference stream (the
black curve), exhibiting their similarity by calculating the
respective EMD value. It can be seen that the EMD increases
progressively, reaching 0.113 for the most dynamic video,
i.e., the music concert stream. The main differences can be
observed for 40% of packets, which correspond to the largest
packets (above 745 bytes) transmitted. This is congruent
with VBR encoding procedures, where more dynamic scenes
typically lead to the generation of larger network packets due

0.06

0.05) . " o
+ N 4 j,

0.04} T LA

+— ta 7'++'17 T f* i 1 -

7] ++ 4 1 1 'I ! T

S PR S .

Sowaf,,i1g0: aptlin (A

= i il TS

w HE T L B g | IHE bR | TR

o.oz—ﬂ SR L H aLsr T 1

0.01}

0.005 5 10 15 20 25 30

Regular Stream i

Figure 4. EMD cost of multiple videocall streams.

to the higher amount of inter- and intra-frame differences. In
particular, this comparison shows that these differences are
more acute in dynamic videos than in rather static videocalls.

To better understand whether these traffic patterns are
stable, and therefore can be reliably used for characterizing
regular Skype streams, a study must be conducted to assess
whether there are significant differences in the packet length
distribution when streaming the same videocall multiple
times over Skype. Each regular video call sample in the
dataset is replayed 10 times. The EMD of each resulting
stream is calculated, taking as baseline the average distri-
bution of all 10 runs. These experiments were performed
through one-way video-conferencing calls, whereas network
conditions were not artificially constrained. Figure 4 plots
the most relevant statistical indicators for the resulting EMD
values of each video: min, max, mean, and percentiles 5, 25,
50, 75, and 95. On the one hand, packet length distributions
of the same video tend to be quite similar. This is attested by
the fact that the largest difference observed between 25th and
75th percentile of a single video is only 0.02. Moreover, the
average EMD value tends to be very similar among different
videos, varying between 0.025 and 0.031. It is possible to
conclude that, under the same network conditions, regular
Skype streams display a high degree of similarity.

The next step is to study whether a censor can differentiate
regular from irregular streams by computing the similarity
of packet length distributions. To that end, a regular stream
is used as reference stream to calculate the EMD cost of
other video streams. These video streams were generated by
running each video of the data set 10 times and calculating
statistical indicators of the resulting EMD cost. Similarly to
the previous experiments, the traffic samples were obtained
from one-way video-conferencing calls, under unconstrained
network conditions. Figure 5 (a) shows the results obtained,
plotting on the left hand side the EMD cost for regular
streams, and on the right hand side the EMD cost for irreg-
ular streams. It is possible to immediately observe a pattern
in which regular streams tend to result in a constantly low

0.300

0.275¢
0.250+
0.225¢
0.200}
0.175¢
0.150}
0.125¢

EMD Cost

0.075¢
0.050
0.025

0.000

Eﬁ* afz*zﬁigmazg___; _____ Y |

2

e S AR TN
0.100 -iii -E
i 3

ju b

Ac

1
ig! Ei!t :i K E -z § Ar

0

1.0

5

Ay

10 15 20 25 30 35 40 45 50 55 60

A¢

Stream i

0.8

'i-~"

P(True Positives)
P(True Negatives)

(a)

0.6
0.4

0.2

......

0.0

0.00 0.05 0.10 0.15

EMD Cost

0.20 0.25 0.30

(b)

Figure 5. EMD based on reference stream.

EMD cost (below 0.1), whereas irregular streams produce
a significantly more scattered pattern varying EMD cost
approximately from as low as 0.025 to as high as 0.25, i.e.,
by a order of magnitude.

The question is then whether it is possible to define
an EMD cost A threshold that can be used as stream
classifier such that a stream s is considered regular if
EMD(sg, s) < A or irregular otherwise (see Section IV-B).
For this particular experiment, A can be set to any value
between 0 and the maximum observed EMD cost (0.275).
To evaluate the effectiveness of this classifier, Figure 5 (b)
shows the probability of true positives (sensitivity) and true
negatives (specificity) as A varies (in the x-axis). It is possi-
ble to see that, as A increases the number of true negatives
starts at 1, meaning that all irregular streams are correctly
identified by the classifier, but eventually starts decreasing
at 0.025 (A,) because some irregular streams start being
classified as regular. In contrast, the true positive rate curve
begins in 0 and starts increasing when the EMD cost of some
regular streams becomes lower than A. Eventually, when A
reaches 10.1 (A¢), the classifier is able to correctly identify
all regular streams.

Based on how the A threshold is set, several classification
policies are possible. Suppose that a censor wishes to apply

an aggressive classification policy by blocking all streams
that are truly irregular. In this case, A must be set to A 4,
which is the point where the true negative rate starts falling
below 100%. The downside of this policy, however, is that a
large number of regular streams would also be blocked, more
specifically 95% of regular streams (false negatives) causing
a massive denial of service of legitimate Skype users. On
the other hand, if the censor aims to prevent blocking
of any regular Skype transmissions (i.e., a conservative
classification policy), A must be set to Ag. The negative
side-effect of this policy is, however, a loss in specificity
since approximately 80% of irregular streams would also
be classified as regular (false positives). An intermediate
possibility that maximizes the classifier’s accuracy is to
take the cutoff point where the probability of true negatives
equals the probability of true positives. For the classifier, this
point corresponds to EMD cost 0.066 (A;) which means
that setting A to this value results in 83% accuracy in
classifying a stream. Thus, it is possible to define a A
threshold which allows for identification of regular streams
with high probability. This is crucial as DeltaShaper explores
this property to hide within regular streams.

C. Unobservability of DeltaShaper Channels

In order to produce covert Skype streams that can be
deemed indistinguishable from a regular stream, DeltaShaper
must be set up such that the EMD cost of resulting stream
remains below the A threshold. Since the properties of a
resulting stream depend on the encoding parameters pro-
vided to DeltaShaper, it is fundamental to study which range
of encoding parameters can be reliably used to produce
unobservable covert streams.

DeltaShaper can be configured with four parameters:
payload area size, cell size, bit number, and frame rate. Since
covering the entire configuration space requires covering a
large number of configurations, this work focuses on a subset
of parameters that result in valid configurations, but not
necessarily optimal in terms of the maximum throughput that
can be achieved. In this study, the reference stream that was
selected in the previous section, as well as the A threshold
values that were found for the same reference stream, are
used. For this test, several payload frames are synthesized
and combined with the carrier video that originally gener-
ated the reference stream. These “offline” samples are then
transmitted over Skype, allowing the gathering of samples
from the resulting network streams.

The analysis of the combined effects of the payload area
size and the cell size starts by fixing the bit number in 1
bit/cell and the frame rate in 1 FPS. Figure 6 shows the EMD
cost for several configurations varying the cell size between
1x1 and 8x8 pixels and the area size ranging from 160x120,
320x240, and 480x368. The area sizes were chosen to cover
roughly 1/16, 1/4, and 1/2 of the frame size, respectively.
The plot is annotated with A threshold values for the three
policies discussed in the previous section: aggressive (A 4),
conservative (A¢), and intermediate (Aj). For example, it
can be seen that, for an intermediate policy, there are five

0.25
— Area: 160x120
o ., == Area: 320x240
0.20 . |- Area: 480x368

EMD Cost

0.00
1x1 2x2 4x4 8x8
CellSize

Figure 6. EMD cost changing area and cell size.

Area: 32‘0x240 ‘

0.35 .
+ 0.30 S -2 A w— Cell: 1x1 4
8025 »-n Cell: 2x2
O 0.20)
n 0.15 a-a Cell: 4x4 |4
= 0.10r - ¢¢ Cell: 8x8 'ﬁ(i
L 883 i.—.,.—,n-*”*‘f”"'- -“.'u‘.“-w'-“ﬁ’r-'.‘.“m‘-u‘ ‘“‘.fwt-\..0.‘“.";“‘1”;&“..0:': AZ
1 5 9 13 17 21
Bits per Cell
0.14 Area: 160x120
+~ 0.12 —v Cell: 1x1
8010 7 w-n cell: 2x2 i
O 0.08 ‘
0 0.06 a-a Cell: 4x4 |4
= 0.04 :
W 0.02
0'001 5 9 13 17 21
Bits per Cell
Figure 7. EMD cost varying the bits per cell.

configurations that produce unobservable streams, i.e., for
area sizes 160x120 or 320x240 and cell sizes 4x4 or 8x8; and
for area size 480x368 and cell size 8x8. The payload area
size 480x368 was consistently found to generate streams
identified as irregular by the DeltaShaper classifier, when
encoding more than 1 bit per cell.

Results show that as the cell size increases, the EMD cost
tends to decrease. This is because larger areas of the frames
will be colored with the same color thereby improving the
efficiency of the video compression algorithm.

A study of how unobservability changes, as a function of
the number of bits per cell, was conducted for the area/cell
size configurations found to be valid. Figure 7 shows the
results, which cover the domain of data bit numbers, i.e.,
between 1 and 24 bits. In general, unobservability tends to
be degraded as the number of bits increases. Some configura-
tions, however, have a more flattened evolution of the EMD
cost. In particular, two configurations fall consistently below
the A threshold value for intermediate blocking policy (Aj),
namely (160x120, 4x4) and (320x240,8x8). This means that
both these encoding configurations are good candidates to
generate unobservable covert streams.

0.20

0.15}

0.10F

EMD Cost

0.05(

000374 5 6 7 8 o
Frames Per Second
Figure 8. EMD cost varying the frame rate.

Lastly, it is conducted a study over how does the frame
rate affects unobservability. To that end, a fixed payload
area size 320x240 and cell size 8x8, are defined. Then, the
EMD cost for a cell bit encoding range, varying between
1 and 6 bits per cell, is measured. Although the (160x120,
4x4) configuration encodes the same amount of bits per cell,
these result in higher error rates in the decoding process.
Figure 8 shows how the EMD cost varies as the frame
rate is increased. The results show that increasing the frame
rate will quickly result in EMD cost above A. A notable
exception is the the data encoding scheme of 1 bit per
cell, which remains below A for all tested frame rates.
Encoding schemes with higher bit numbers can only tolerate
the minimal frame rate value (1 FPS).

D. Performance of the Covert Channel

Although it is possible to generate covert streams from
numerous encoding configurations, DeltaShaper can only
safely adopt those that result in unobservable streams. Fur-
thermore, performance can also be affected by decoding
errors at the receiver when interpreting the cell color of
payload frames. In fact, as the number of bits encoded per
cell increases, the video compression algorithm tends to
introduce changes in the less significant bits of the color
of each pixel, therefore introducing more decoding errors.

Taking into account both restrictions in terms of stream
unobservability and decoding errors, we have identified a
candidate encoding configuration for DeltaShaper, which
consists of: 320x240 area size, 8x8 cell size, 6 bits per cell,
at 1 frame per second. Under this scheme, DeltaShaper is
able to achieve 0.32 and 0.39 KBps, respectively with and
without the use of error-correcting codes.

E. Impact of Network Perturbations in Classification

In the previous sections, for simplicity of exposition,
we have used a single reference stream for computing
A thresholds. However, in a real setting, a censor would
be able to compare the target stream with a dataset of
regular streams, thus taking into account the underlying
differences among regular streams. In the further results,

each regular / irregular stream was compared against all
streams comprising the regular streams dataset (by taking
the average of the different As).

A censor may introduce controlled perturbations in the
network in an attempt to establish improved A thresholds
that may enhance classification performance and ultimately
unveil DeltaShaper’s covert channels. For assessing whether
classification performance is enhanced by artificially con-
straining the network, we have attempted the classification
of streams upon several network limitations, namely: band-
width throttling (unrestricted, 500kbps and 300kbps); loss of
random packets (5%, 10% and 20%); and the introduction of
jitter between packet delivery (20ms base delay plus 10ms,
20ms and 50ms of jitter, respectively).

The experiment’s outcome shows that artificial network
impairment contributes for a decrease in classification per-
formance, ranging from 3% to 13%, when distinguishing
streams with the help of the analysis of packet sizes and
EMD. This suggests that a censor is able to establish more
accurate A thresholds in unrestricted network conditions.

FE. Exploring Traffic Features and Similarity Functions

We have assumed up until this point that the adversary
uses the analysis of packet lengths and EMD to classify
Skype streams. However, in a real setting, a censor could
use different traffic features and similarity functions in an at-
tempt to achieve higher accuracy in detecting streams with a
covert channel. We have performed additional tests, by using
alternative traffic features, namely: bi-gram distribution of
packet sizes, inter-packet time, bi-gram distribution of inter-
packet times. We have also attempted the classification of
streams with the 2-sample Kolmogorov-Smirnov (KS) test,
a popular similarity function used in the related literature.

The outcome of such experiments suggests that the anal-
ysis of packet lengths, when used in tandem with EMD,
offers a sound and lightweight approach to classify Skype
streams. In a general way, the classification accuracy offered
by KS was inferior of that offered by EMD. Notably, for
unrestricted network conditions, KS accuracy stood 6% short
of EMD. A broader study over the use of different traffic
features and similarity functions for classification can be
found in the dissertation.

G. Use Cases

Given that the data throughput that can be achieved while
preserving unobservability is relatively small, DeltaShaper is
not adequate for the transmission of bulk data. Nevertheless,
it can sustain the execution of applications that are not
bandwidth hungry and are latency tolerant. To confirm this
hypothesis, DeltaShaper has been tested with seven use
cases: fetching a 4KB web page from the receiver (Case
A), downloading a 4KB file from an FTP server running
on the receiver (Case B), tunneling a small email (two
small sentences) through an SMTP server running on the
receiver (Case C), issuing an SSH session to the receiver
and performing the “Is” command (Case D), issuing a telnet
session to the receiver and performing the “ls” command

Use Case W/ DS W/o DS Overhead ‘
A. Wget Im 9s 830ms 7ms 9,975.7x
B. FTP 2m 45s 8s 528ms 19x

C. SMTP 2m 42s 37s 913ms 4.3x

D. SSH 1m 51s 493ms 6s 485ms 17.2x

E. Telnet Im 17s 471ms 7s 670ms 10.1x

F. Netcat Chat 1s 147ms 11ms 133

G. SSH Tunnel 3m 46s 55ms 21s 940ms 10.3x

Table 1

EXECUTION TIME FOR DELTASHAPER USE CASES.

(Case E), sending a message directed at a netcat server
running on the receiver, mimicking a text chat (Case F),
tunneling an SSH session to a remote SSH server through the
receiver, and performing the “Is” command (Case G). In use
cases A-F, the client communicates only with the receiver
over a DeltaShaper channel. In case G, the receiver acts as
a relay by tunneling traffic between the client and a remote
party. Excepting case A, all other use cases are performed
interactively, where a proficient user types the commands
required to establish the different types of connections in
a terminal. Table I provides a summary of the execution
time for each use case when performed with and without
DeltaShaper, i.e., using overt communication channels be-
tween client and receiver. As depicted, the execution time
is several orders of magnitude higher in DeltaShaper than
in overt channels. Such a large overhead is expected given
the low throughput and high latency that DeltaShaper can
currently deliver. Nevertheless, in spite of the high delay
experienced by users, all tested use cases are fully functional.

VII. CONCLUSIONS

This work describes DeltaShaper, a novel Internet cen-
sorship circumvention system which leverages the video
channel of popular video-conferencing applications to tunnel
covert data. The system offers a data-link interface, sup-
porting any protocol running over TCP/IP, offering users
a wide array of possibilities to transfer information in an
unobservable way. An extensive evaluation of the prototype
has been conducted so as to define which combination of
encoding parameters can defend against traffic analysis.

ACKNOWLEDGMENTS

This work benefited from the fruitful comments of Pro-
fessor Fernando Pereira, regarding the H.264 codec inner
workings, as well as Professor Bruno Martins’ suggestions
on evaluation metrics. This work was performed at INESC-
ID and was partially funded by FCT and PIDDAC as part
of the UID/CEC/50021/2013 project.

REFERENCES

[1] S. Aryan, H. Aryan, and J. A. Halderman, “Internet censor-
ship in Iran : A first look,” in Proc. of FOCI, Washington,
DC, USA, 2013.

[2] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The
second-generation onion router,” in Proc. of USENIX Security,
2004.

10

(3]

(4]

[3]

[6]

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

David Fifield, “A Child’s Garden Of Pluggable
Transports,” https://trac.torproject.org/projects/tor/wiki/
doc/AChildsGardenOfPluggableTransports, 2014.

A. Houmansadr, C. Brubaker, and V. Shmatikov, “The parrot
is dead: Observing unobservable network communications,”
in Proc. of IEEE S&P, San Francisco, CA, USA, 2013.

A. Dainotti, C. Squarcella, E. Aben, K. C. Claffy, M. Chiesa,
M. Russo, and A. Pescapé, “Analysis of country-wide Internet
outages caused by censorship,” in Proc. of IMC, Berlin,
Germany, 2011.

A. Houmansadr, T. J. Riedl, N. Borisov, and A. C. Singer,
“I want my voice to be heard: IP over Voice-over-IP for
unobservable censorship circumvention.” in Proc. of NDSS,
2013.

S. Li, M. Schliep, and N. Hopper, “Facet: Streaming over
videoconferencing for censorship circumvention,” in Proc. of
WPES, Scottsdale, Arizona, USA, 2014.

R. McPherson, A. Houmansadr, and V. Shmatikov, “Covert-
Cast: Using Live Streaming to Evade Internet Censorship,” in
Proc. of PETS, 2016.

E. Wustrow, S. Wolchok, I. Goldberg, and J. A. Halderman,
“Telex: Anticensorship in the network infrastructure,” in Proc.
of USENIX Security, San Francisco, CA, USA, 2011.

C. V. Wright, S. E. Coull, and F. Monrose, “Traffic morphing:
An efficient defense against statistical traffic analysis,” in
Proc. of NDSS, San Diego, CA, USA, 2009.

H. Moghaddam, B. Li, M. Derakhshani, and 1. Goldberg,
“Skypemorph: Protocol obfuscation for Tor bridges,” in Proc.
of CCS, Raleigh, North Carolina, USA, 2012.

K. P. Dyer, S. E. Coull, and T. Shrimpton, ‘“Marionette: A
programmable network-traffic obfuscation system,” in Proc.
of USENIX Security, Washington, D.C., USA, 2015.

W. Zhou, A. Houmansadr, M. Caesar, and N. Borisov, “Sweet:
Serving the web by exploiting email tunnels,” in Proc. of
HotPETS, 2013.

C. Brubaker, A. Houmansadr, and V. Shmatikov, “Cloudtrans-
port: Using cloud storage for censorship-resistant network-
ing,” in Privacy Enhancing Technologies, ser. Lecture Notes
in Computer Science, E. De Cristofaro and S. Murdoch, Eds.
Springer International Publishing, 2014, vol. 8555, pp. 1-20.

D. Fifield, C. Lan, R. Hynes, P. Wegmann, and V. Paxson,
“Blocking-resistant communication through domain fronting,”
in Proc. of PETS, Philadelphia, PA, USA, 2015.

B. Hahn, R. Nithyanand, P. Gill, and R. Johnson, “Games
without frontiers: Investigating video games as a covert
channel,” in Proc. of IEEE Euro S&P, 2016.

P. Vines and T. Kohno, “Rook: Using Video Games As a Low-
Bandwidth Censorship Resistant Communication Platform,”
in Proc. of WPES, 2015.

Y. Rubner, C. Tomasi, and L. J. Guibas, “The Earth Mover’s
Distance As a Metric for Image Retrieval,” Int. J. Comput.
Vision, vol. 40, no. 2, pp. 99—-121, Nov. 2000.

S. B. Wicker, Reed-Solomon Codes and Their Applications.
IEEE Press, 1994.

