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Abstract. State Machine Replication (SMR) is one of the fundamental
strategies to preserve the consistency of a replicated system. Different
protocols to implement SMR exist, each optimized for different opera-
tional conditions. In this report we study the algorithms that allow to
replace, on-the-fly, one implementation of SMR by another SMR imple-
mentation, in scenarios that tolerate both crash faults and Byzantine
faults. Our goal is to understand what are the techniques that allow to
perform such dynamic adaptation with small impact on the system op-
eration. Finally, we present an architecture to allow us to implement and
compare, in practise, several of this techniques so that we can develop
efficient solutions.

1 Introduction

Today, replicated distributed systems are widely used to increase the avail-
ability and performance of services provided in the Internet. Replication has
the potential to improve performance, by distributing the load among different
servers. Furthermore, replication can increase the system availability by allowing
the service to be provided even if some processes fail.

One of the fundamental strategies to preserve the consistency of a replicated
system is to use state-machine replication (SMR). This approach can be ap-
plied to any system that can be modelled as a deterministic state machine, a
requirement that is met by a large variety of services like data stores, scien-
tific calculators, document editors, etc. In simple terms, it consists on running
the same application in multiple replicas, and use communication and coordina-
tion protocols to ensure that these replicas process the exact same sequence of
requests (i.e., all requests are received by all replicas in the same total order).

The actual protocols that implement the communication and coordination
support, such as consensus protocols[1], strongly depend on the properties of
the system where the state-machine is deployed: the degree of synchrony of the
infrastructure and the types of faults that can occur, are two examples of factors
that affect the implementation of consensus. The more severe the faults we need
to tolerate, the more complex and computationally expensive are the algorithms
that implement consensus. In particular, algorithms that tolerate crash faults are
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much more efficient than algorithms that tolerate arbitrary faults (also known
as Byzantine faults[2]). Due to this reason, many systems only tolerate crash
faults.

Byzantine faults may be caused by electromagnetic phenomena (such as bit
flips) or be the result of malicious code (for instance, if a node in the system is
compromised by hackers). Unfortunately, trends in hardware design (where gates
are densely packed in a chip) and cybercrime, make the occurrence of Byzantine
faults more likely. This has spurred the interest in developing efficient solution
to support state-machine protocols that are tolerant to arbitrary faults, what is
known as Byzantine fault-tolerance (BFT). As a result of this effort, several BFT
protocols have been designed, such as PBFT[3] and Zyzzyva[4], among others.
Despite all these efforts, there is not a single BFT protocol that outperforms all
other protocols for all deployments. In fact, some protocols perform better in
some conditions than others, for instance, it has been shown in [5] that PBFT
first scales better with payload size while Zyzzyva provides greater throughput
and is more robust in wide-area and lossy networks.

Given that the characteristics of the deployments where BFT systems operate
may change often nowadays (as a result of both hardware upgrades and changes
in the workload), it would be advantageous to leverage the optimizations of
different solutions for different environment conditions. This way, instead of using
a single SMR implementation, that is chosen at deployment time, and that may
turn out not to be the most appropriate during a large portion of the execution
time, it would be possible to always use the implementation that better fits the
current conditions, at any given time. To achieve this in an efficient manner, it
must be possible to adapt the system in runtime, with minimal interference on
the provided service.

In this report we study the algorithms that allow to replace, on-the-fly, one
implementation of SMR by another one, in scenarios that tolerate both crash
faults and Byzantine faults. Our goal is to understand what are the techniques
that allow to perform such dynamic adaptation with small impact on the sys-
tem operation, such that it becomes feasible to react quickly to changes in the
workload, the operational condition, or even in the level of threat for instance,
by switching among crash-tolerant and Byzantine-Tolerant implementations.

The rest of the report is organized as follows. Section 2 briefly summarizes
the goals and expected results of our work. In Section 3 we explore further the
ideas behind SMR. Section 4 discusses the problems and some solutions to BFT
SMR. In Section 5 we present some thoughts on protocol adaptation. Section 7
describes the proposed architecture to be implemented and Section 8 describes
how we plan to evaluate our results. Finally, Section 9 presents the schedule of
future work and Section 10 concludes the report.

2 Goals

This work addresses the problem of performing the dynamic adaptation of
state machine replication protocols. More precisely:
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Goals: We aim and identifying, implementing, and evaluating exper-
imentally different techniques to reconfigure the SRM protocol, in order
to understand which techniques are more efficient in systems subject to
Byzantine faults.

To achieve the goal above, we will start by surveying related work, namely
previous proposals to reconfigure SMR for both the crash and Byzantine fault-
model. We will implement the most relevant of those techniques in a common
framework, namely the BFT-SMaRt[6] framework and use those implementa-
tions to compare their performance, namely, their impact on the latency of on-
going request during the reconfiguration period.

Expected results: The work will produce i) a catalogue of different
SMR reconfiguration techniques suitable for Byzatine fault-tolerance;
ii) an implementation of each of these techniques in the BFT-SMaRt
framework, iii) an extensive experimental evaluation using a cluster of
workstations.

3 State Machine Replication

A general approach to provide fault-tolerance is to use State Machine Repli-
cation [7]. This approach sees the whole system as a finite state machine with
a given state and that is capable of processing certain commands, which mod-
ify the state (deterministically). This state is replicated among all replicas of
a given service and commands are executed in all of them. The rationale is to
have several copies of a server, so if some fail, others can still provide service.
It is common to have a log with the history of the requests processed by the
machine. This serves two purposes, firstly to transfer state if a new replica is
initiated (possibly to replace a faulty one). Secondly, to enforce synchronization
among replicas. As faults may cause some deviations among replicas states, the
history of each replica is used to, from time to time, decide upon a common
history, so that the overall SMR keeps consistent. To decide on the order of the
commands executed, there is the need for an agreement among the replicas, that
is called consensus. A high level representation of the general architecture of a
replica in SMR is presented in figure 1.

The replicas participating on a SMR system may change over time, because
faulty replicas may be replaced by new ones, or the total number of replicas is
changes (e.g. increased to withstand more faults). As it is essential that every
replica knows about the others in order to carry out consensus, this state about
how many and which replicas are participating is captured in a view.

SMR systems can be built to tolerate Crash or Byzantine faults, depending
on the concerns while developing it, both approaches are discussed in more detail
in the following sections (Crash in subsection 3.1 and Byzantine in section 4).
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Fig. 1. The general architecture of a replica in State Machine Replication

3.1 Raft

Raft[8] is a protocol used to implement SMR in synchronous systems subject
to crash faults. Raft can be seen as a more understandable consensus approach
than the most known Paxos protocol, originally proposed by Leslie Lamport[9].
Raft requires at least 2f + 1 replicas in order to tolerate up to f faults.

Raft is a leader-based protocol; one of the replicas is elected to play a special
role and act as a coordinator for the protocol. The protocol includes the required
mechanisms to replace a failed leader by another replica and to make sure that
no inconsistency is generated even if, due to the asynchrony of the system, more
than one replica believes to be the leader at a given point in time.

The leader replica receives requests from the client and broadcasts them to
all the other replicas. Before a request is processed, the protocol ensures that it
is ordered and added to the log of, at least, f + 1 replicas. When a given entry
is appended to the log of a majority of the replicas, we say that it is committed
and it is safe to answer to the client because, despite failures, that operation will
always be part of the history of the state machine. Known to be committed, it
can be executed and a response returned to the client.

If the leader fails, a new leader is elected. Each replica has a given time-out
threshold to wait for messages from the leader. When a time-out occurs, the
replica suspects that the leader may have crashed, so it initiates a leader elec-
tion. Firstly it proposes itself as a candidate for leadership to all other replicas.
Then, all replicas cast their vote, and if, and only if, a majority vote for it, it
starts to be the leader and informs every other replica of its new role. Every
time an election is started, it is started a new term, which is sent along all com-
munications. Terms have increasing numbers and are used to enable replicas to
know if other replica is further advanced or far behind, as the system progresses.
As an example, if a candidate to leadership receives a request for processing a
command from another leader and the term is greater than its own term, then
it knows that the new leader already won an election further on the progress of
the machine. Knowing this, the candidate stops the election, as it knows there
was an election “further in the future” in which he did not participate, although
a majority of replicas did. This can happen, for example, due to a transient fault
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in the network, where some packets were dropped, and the replica missed some
communications.

When a leader is elected, it is possible that inconsistencies of logs among the
replicas may arise. As an example, the old leader may have entries in his log that
were not fully replicated yet. To solve this, Raft forces all replicas to replicate
the new leaders log. This is done by finding the latest point where the log of
the replica is equal to the leader, removing further entries (that not exist in the
leader’s log), if they exist, and appending the missing entries that are present
in the leader’s log. Unfortunately, if no preventive measures are taken, the new
leader can be a replica that failed to append some commands to his log. This
could carry the risk of erasing parts of history which a client already knows of,
and thus breaking correctness, because the overall state of the machine would
not be consistent with the requests made by client. To solve this, Raft limits
who can be elected as leader: only a candidate that has a log with, at least, the
same entries as a majority of the replicas can be elected. This ensures that the
new leader has all the committed entries, as by design, an entry is committed if
a majority of the replicas have it in their logs.

As the main focus of this work is on BFT, we will not present more crash
fault tolerant systems, as the on described earlier already provides a general view
about the mechanics of crash fault tolerant SMR. In the next section we will
present the problem of Byzantine fault tolerance, some systems and discuss the
key differences between crash and Byzantine fault tolerant, as well the differences
and similarities among BFT SMR approaches.

4 The Byzantine Generals Problem

The Byzantine fault tolerance problem was first described by Lamport, Shostak
and Pease in [2]. The authors present the problem starting point as follows: there
are several of the Byzantine army camped outside an enemy city, being each di-
vision commanded by a general. They must agree on how to perform the attack,
because if they don’t attack in accordance to each other they might face defeat.
The problem arises because there are traitors among the generals that might try
to impair this agreement so that the Byzantine army fails. Of course, this is a
metaphor for a distributed where some machines may not act like specified or
intended.

In the paper was presented a solution (among others) that became the start-
ing point for most practical implementations of Byzantine fault-tolerant (BFT)
SMR. The ultimate objective of the algorithm is to have all the non-faulty nodes
agreeing on a value. These nodes are the replicas, when we talk about SMR. The
value to be agreed upon is suggested by the leader, a node with this special role.

As discussed in the paper, the ability of faulty nodes to lie about the messages
received from other nodes introduces difficulty in solving the problem. So as to
mitigate this, the proposed solution uses signed messages to prove the source of
a given message. This algorithm assumes a fully connected network, at most f
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faulty nodes and at least 3f +1 nodes. Below, we present an informal description
of the solution:

1. Every node starts with a vector Vi = ∅, representing the collection of values
received from other nodes.

2. The leader proposes a value v, sending a signed message to all other nodes.
3. Upon receiving a message each node acts accordingly with one of the next

cases (in other cases the messages are ignored):

A) If it receives a message from the commander for the first time, the node
adds v to Vi. Then it signs the message and resends it to all other nodes.

B) If the node receives a message with a value v′, signed by k + 1 nodes
(including the commander) and v′ /∈ Vi, the node adds v′ to Vi. Then if
k < f , it signs the message and sends it to all nodes apart from those
that already signed the said message, to try to guarantee that, even if f
nodes fail, at least one correct node will know about the value propposed
by the leader.

4. When a node will not receive more messages it chooses an action, based on
a deterministic function, taking in account the values in Vi.

To know when a node will not receive further messages, it is needed to have
some time-out mechanism. To achieve this, it is necessary to assume some max-
imum time for processing and transmitting a message, therefore a synchronous
network needs to be assumed. Although this may seem a flaw, there is no possi-
ble solution for solving the problem under an asynchronous network assumption,
as the FLP Impossiblity Theorem [10] proves.

4.1 Tangaroa

In this subsection we will present an adaptation of Raft that tolerates Byzan-
tine faults, called Tangaroa [11]. We will compare both approaches so the differ-
ences between crash fault tolerant and Byzantine fault tolerant systems emerge.

The first key difference is that to tolerate Byzantine faults there is a need
for more replicas, at least, 3f + 1 [7], to tolerate f faults, as opposed to 2f + 1
in crash fault tolerance [12].

Secondly, it is necessary to ensure authenticity in communications, as replicas
may lie about messages received from other replicas. To enforce this, Tangaroa
uses digital signatures. As an example, a leader could modify a command received
from a client, tricking other replicas to execute something different from the real
command and harming the safety of the system. If the client signs its messages,
then it is theoretically impossible for a leader do tamper with it [13].

Thirdly, a Byzantine leader could starve the system by ignoring clients’ re-
quests while continuing to send heartbeats, this is, sending messages proving it
has not crashed, although never broadcasting the requests. So there must be a
mechanism that is able to detect this and act upon it. This approach solves it by
allowing clients to denounce a leader if it does not answers to requests timely,
so a leader change is triggered.
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Furthermore, any replica could lie about its log, when asked to replicate the
leader log, compromising the state of the machine. They could state that they
had replicated it, but when in reality they have another sequence of requests
in its log. So, further proof must be gathered to convince other replicas that a
replica has, in fact, all the entries in its log. To prove this, a replica hashes its
log and signs it, so others can compare the hashes with their own to check if the
histories match.

Another issue arises because a replica could lie and elect himself as leader,
without winning an election. To do this, a replica could just broadcast a message
stating “I’m the new leader”, making others look to it as the new leader. To
prevent this, a recently elected leader, when informing the system of its new
role, must sent cryptographic proof that a majority of replicas voted for him.

A Byzantine leader in Raft, as it is the single node that coordinates what is
committed, could also tell that a given entry was committed even if a majority
of the replicas had not appended it to their logs. By opposition, in Tangaroa,
the responsibility of marking entries as committed is removed from the leader
and belongs to all replicas. When a replica appends some entry to the log it
broadcasts its action to all other replicas. The replicas collect these messages
and identify by themselves that an entry was committed when a majority of
replicas has, in fact, appended it.

Finally, in Raft a Byzantine replica could always be proposing elections,
sending the system to a loop of infinite elections, where no progress is made.
To mitigate this, in Tangaroa, a replica only casts a vote for a new leader if it
also suspects that the leader is faulty. Otherwise, the election will be ignored,
because all correct replicas will ignore the election proposal.

We can see that some overheads arise when a Byzantine fault tolerant ap-
proach is used. There is a need for more replicas, which some times is an issue,
because makes the whole system more expensive. Moreover there is the need
for producing cryptographic proofs to ensure authenticity, which causes a sig-
nificant overhead in CPU and the time consumed to process communications,
both when producing and verifying those proofs. Finally, a need for all-to-all
communication arises, which increases the number of messages in the network
exponentially, what can possibly introduce more latency on communications, as
well, it demands further effort by the replicas to process all the communications.
However, despite this extra overhead, sometimes a Byzantine environment must
be assumed, when having a Byzantine failure is not tolerable, for example in
critical control software.

Below we present and discuss some approaches for solving BFT SMR in
practice.

4.2 PBFT

PBFT [3] is a widely-studied BFT algorithm that aims on solving BFT SMR
in a practice. It was the first presented BFT protocol that relaxed the synchrony
assumption, which is often not present in real world systems. It does not rely on
synchrony to ensure safety, instead, it relies on the assumption that the network
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has some times of synchrony to ensure liveness (assuring liveness and safety
under total asynchrony is impossible [10]). Furthermore, there are presented
some optimizations that try to reduce the response time.

As Tangaroa, this approach needs the theoretical minimum of replicas to
work, which is 3f+1 replicas, where f is the maximum number of faults tolerated.
On a high-level view, the algorithm works as follows:

1. The client sends an operation request to the leader, that is responsible for
ordering the operations on the system.

2. The leader atomically multicasts the request to the other replicas, called
backups.

3. All the replicas process the request and answer to the client.
4. The client verifies if it received at least f+1 equal replies, if so it assumes

that reply as the result of the operation.

In this system the view states what replica is the leader. When the leader is
suspected to be faulty, a view change is carried out and another replica becomes
the leader. This suspicion is arose when a backup notices that a request it knows
of is taking too long to be executed.

The atomic multicast protocol is composed of three phases: pre-prepare, pre-
pare and commit. The first two, together, guarantee that the requests are totally
ordered within a view, even in the presence of a faulty leader. The latter two, in
conjunction, guarantee that the ordering is kept among views.

In the pre-prepare phase the leader assigns a sequence number n to the
request and sends a PRE-PREPARE message to all replicas. A backup accepts
this message if:

– is in the same view has the leader,
– has not accepted a pre-prepare with the sequence number n for a different

request, in that view,
– verifies the authenticity of the message.

If a backup accepts the PRE-PREPARE, it enters in the prepare phase. As it
does so, it sends a PREPARE message to all other replicas. Every replica regis-
ters the PRE-PREPARE messages, its own PREPARE, as well as the PREPARE
messages received from other replicas (as long as they have correct signatures
and are in the same view).

When a replica has at least 2f PREPARE messages from different backups
that are coherent with the PRE-PREPARE, it multicasts a COMMIT message
to all other replicas. When a a replica receives at least 2f+1 COMMIT messages
matching the PRE-PREPARE, it processes the operation requested by the client
and replies to it.

A view-change is initiated when a backup notices that a request is taking to
long to be processed. To change the view, the replica stops participating in the
processing of requests and multicasts a view-change message. When the leader
of the new view gets 2f view-change messages, it informs all backups of the new
view (with proof that 2f replicas agreed upon that).
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In order to make the system faster in practice, among other optimizations,
this paper introduces the usage of Message Authentication Code (MAC) instead
of digital signatures to reduce the load on the CPU of the replicas. MACs are
computationally less expensive because they use symmetric cryptography, as
opposed to the asymmetric cryptography used to produce digital signatures,
which needs more complex mathematical computations to be carried out.

4.3 Zyzzyva

Zyzzyva aims to make a fast BFT SMR system by using speculation. In
this approach, a request is executed without running an agreement among the
replicas to order it, in the hope that no failures occur, unlike other systems
such as PBFT. Logically, to ensure safety even under the presence of Byzantine
faults, an agreement is run when suspicions of faulty behaviour occur. To detect
this type of behaviour, the client is responsible to detect and inform about some
divergence of answers received by it. As PBFT, Zyzzyva relies on a leader (called
leader in PBFT) to give a sequence number to the requests and uses 3f + 1
replicas (f being the number of tolerated faults).

In the fast case, where there are no faults nor divergence on the state of the
replicas, the protocol works as follows:

1. The client sends a request to the leader.
2. The leader gives a sequence number to the request and forwards it to all the

replicas.
3. Each replica executes (speculatively) the request and sends the response to

the client. If the client receives 3f + 1 equal answers, it is safe to rely on
the answer because, at least all the correct replicas, will keep this request
consistently ordered in their history.

On the other hand, if the client receives only between 2f+1 and 3f matching
answers, further steps must be taken to ensure safety. It may indicate that the
state of the replicas is diverging, due to faults in them or the network, because
some there is no proof that all processed the request the same way. Therefore,
the consistency of the general state of the system may be at risk of becoming
inconsistent when a view change happens. This could happen, for example, under
the presence of a faulty leader, that could orchestrate an attack by lying to some
correct replicas, making it possible to agree on a faulty state when a view-
change happens. To prevent this kind of faulty behaviour to harm the system’s
correctness, the client builds and distributes a certificate that proves that at
least 2f + 1 replicas agree on the answer of the request with a given sequence
number, so when a view change happens, it is ensured that there is proof that
a quorum of 2f + 1 replicas agreed on the order of the request in the past. To
ensure that enough servers received this proof, it awaits the acknowledgement of
at least 2f + 1 replicas. This amount of replicas ensures that even the presence
of f faulty nodes that will lie about this acknowledgement, there is a sufficient
number of replicas (f + 1) to prove that this agreement existed.
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If the client receives less than 2f+1 matching responses, which is not enough
to ensure that a majority of correct replicas agreed on some response, it suspects
a faulty leader and resends the request to all replicas. If a given replica has not
processed that request already, it forwards the request to the leader. If, after a
certain amount of time, it has not received the corresponding request ordered
by the leader, the replica starts a view-change.

The usage of speculation and having an agreement protocol with just two
steps introduces extra complexity on the view-change protocol. Having just two
phases, omitting a phase when the replicas share their state, makes the tradi-
tional view-change protocol unsafe, as the correct replicas might not be able
to initiate a view-change in the presence of a faulty leader (it is possible that
only f correct replicas notice it). To ensure that at least 2f replicas commit to a
view-change, there is a need for an extra step in the view-change protocol, where
the replicas state their disagreement about the leader. So, the protocol works as
follows:

1. A replica informs all other about is suspicion about the leader.
2. Upon receiving f +1 confirmations of the suspicion on the leader from other

replicas, it is created a proof that at least one correct replica suspects the
leader and it is sent along a view-change message. All correct replicas, given
this proof, will commit also to the view-change.

3. The leader of the new view collects 2f + 1 view-change messages and then
send a new-view message with proof of that.

4. Finally, when a replica receives the new-view, it changes its view.

4.4 Aardvark

Aardvark [14] addresses the problem of BFT SMR with a very different mind-
set of the previous solutions. The authors reject every optimization that could
impair the performance in cases where faults happen. This way, Aardvark main-
tains a steady throughput, even in the presence of faults, making it more robust
w.r.t. Byzantine behaviour, in the replicas and the clients. This system as a simi-
lar communication pattern to PBFT, using a leader to sequence clients’ requests
and a three phase agreement protocol, although it presents some key differences
on the implementation.

Firstly, to minimize the harm a Byzantine client could make on the system,
clients digitally sign their requests, instead of using MAC (although, MAC are
also used to optimize in some cases). This way it is ensured that if a replica can
prove the authenticity of a request, all other can too, because signatures provide
non-repudiation, so when a client signs a message, there is (theoretically) un-
deniable proof that it indeed sent that message. Although signatures are more
expensive to compute than MAC, this simplifies the algorithm, removing some
corner cases found on other systems. For example, the authors found out that
in PBFT and Zyzzyva if a client would send a request with a valid MAC for the
primary and invalid MACs for the other replicas, it would render the system un-
usable. PBFT would incur in recurring view changes, while Zyzzyva would invoke
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a conflict resolution protocol that in practise, due to not be fully implemented,
would never finish.

Secondly, also to mitigate the impact of faulty clients, it uses separate queues
for messages from the clients and replica-to-replica communication. This way,
a replica can guarantee that only a portion of the resources can be used by
the client, ensuring that a client can not stop a replica from making progress
in requests already received by flooding the network. This approach also uses
independent network interface controllers and wires to link each pair of replicas.
So, at the expense of having to rely on point to-point communication, it is
possible to receive messages in parallel and also shut down links to faulty nodes
trying to develop a denial of service attack.

Lastly, Aardvark carries out view-changes regularly, as opposed to carry-
ing it only as a last-resort measure. The authors justify this decision stating
that the cost of having a faulty leader surpasses the cost of executing periodic
view-changes. In order to carry the changes periodically, the replicas demand an
increasing minimum throughput of requests by the leader, as soon as the leader
fails to provide such throughput, the replicas start a view-change.

4.5 Discussion

When comparing the machinery needed to tolerate Byzantine faults versus
the mechanisms needed to tolerate only crash faults, it is evident that the first
carries significant overheads. Firstly there is a need for, at least, more f replicas
to tolerate f faults. Secondly, all-to-all communication introduces much more
load in the network, which can cause starvation. Moreover, the use of authenti-
cated messages introduces more load on the CPU to process the cryptography,
as increases the time needed to process each message. Nonetheless, this all-to-all
communication, with a heavy CPU load to calculate authentication proofs, can
be avoided in some cases as show by Chain in [15]. In Chain all replicas form
a chain and a request is transferred from node to node in the chain, reducing
the cost of all-to-all authenticated communication, but introducing extra latency,
because the messages are processed sequentially in every nodes, instead of in par-
allel. However, as stated earlier, these overheads in latency, network resources
and CPU, could pay off if the gain in resilience and availability is essential to
the service provided.

The three practical BFT SMR protocols presented above show us that differ-
ent approaches and optimizations can be taken in order to produce BFT systems.
Each of the approaches carries a gain in performance some cases while sacrificing
some of it in other situations. For example, when no faults occur and the net-
work is stable, Zyzzyva has the best performance, due to its fast and two-phase
cases. On the other hand, under the presence of faulty clients, Aardvark beats
Zyzzyva due to its resilient design. A faulty client can also harm the performance
in PBFT, sending inconsistent MAC authenticators, one for the client and other
for the other replicas, this would send the system to recurrent view changes,
limiting its progress [14]. Moreover, when comparing PBFT with Zyzzyva, we

11



can denote that the first is more predictable and steady performance under in-
creasing payload sizes of the requests. On the other hand, Zyzzyva offers a better
performance in wide-area network, where packet loss is frequent [5].

It’s also noticeable that, despite their major differences, all the approaches
can be decomposed in the same modules. All implementations have a protocol
for the agreement and a module for view change. The clients have also different
behaviours and responsibilities, but in all of the systems they all request some-
thing and act upon a reply (or the absence of it). Moreover, the view carries a
slightly different meaning and information with it in the different approaches,
but, then again, they are always responsible to capture the configuration and (to
some extent) the state of the system in a given timespan. So, a pattern starts
to emerge when we look to this algorithms from a higher level, which is very
important to be able to modularize these in order to adapt them, specially if we
are looking for a general solution that can work with arbitrary algorithms.

5 Approaches on Protocol Adaptation

There is a wide spectrum of adaptation that can be made to protocols, that
can affect different ranges of replicas, as well as they can demand distinct levels
of consistency on coordination. Adaptations can have effect on all replicas or
in just a subset, as an example, a change in the agreement protocol must be
known by all replicas, while a change in the batch size, usually, only concerns
the leader. Moreover, adaptations may demand an atomic agreement (no request
can be processed with different settings among the replicas), for example, if the
authentication method changes, all replicas must know it before processing any
further request, otherwise inconsistencies may be introduce in the system. On
the other hand, if it is the time-out threshold to detect replicas failing to answer
that changes, most of the times is not paramount that it happens at all the
replicas simultaneously to keep the correctness of the system. Below we present
some adaptations that can be made for each of the categories.

– Adaptations that have effect only on a subset of replicas: Change
in the batch size of requests, changes in logging techniques, etc.

– Adaptations that have effect in all replicas:
• Demanding an atomic agreement: Changing the underlying agree-

ment protocol; changing the BFT SMR approach; changing the authen-
tication method used for the messages.

• Demanding eventual agreement: Changing the time-out threshold
to detect replicas failing to reply;

To carry out such configurations is then needed an orchestration between the
replicas of the system, if the adaptation affects more than one replica, and some
local reconfiguration strategy [16]. The orchestration component is responsible to
coordinate the reconfiguration among the replicas in order to ensure the correct
function of the system. This orchestration works much like a synchronization
barrier, so that all the replicas move through the reconfiguration steps in sync
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with each other. This reconfiguration steps are the local reconfiguration strategy,
that defines how the local steps needed to change the configuration.

The combination of local strategies with different kinds of orchestrations can
provide several approaches on reconfiguration, each one has different consistency
guarantees and different performance [16]:

– Flash: In this strategy all the replicas apply the changes locally, without
care for other replicas. This is a strategy that introduces little delay during
a reconfiguration, although only works for adaptations that do not demand
for an atomic agreement.

– Interrupting: This strategy stops the systems, applies the new configura-
tion and only then starts the system again. This way and atomic agreement
for when the new configuration is applied is guaranteed, but the delay intro-
duced is considerably bigger than the previous solution.

– Non Interrupting: To try to minimize the delay of an interrupting strat-
egy while maintaining the guarantees of an atomic agreement adaptation,
this approach runs both configurations (old and new) simultaneously until
the new one is fully functional, then the old can be shut down. Nevertheless,
this introduces more complexity in the orchestration than the previous solu-
tions, it also carries the computational overhead of having two configurations
running at once.

5.1 Adaptation of SMR Protocols

Any adaptation strategy used may ensure the properties of systems that is
being adapted. When talking about SMR usually we want to ensure that every
request is totally ordered at most once, thus being necessary to ensure that
a given request that was already ordered previously to an adaptations is not
ordered again.

Another key property of SMR that needs to be ensured during and adaptation
is irrevocability. This property guarantees that if the systems outputs to the user
that some request was executed, then the state of the system must always reflect
that execution, even if some processes fail. More informally, if a user successfully
executed an action, like depositing some amount of money, then it as assurance
that in the future the money will still be in her account, despite what failures
can happen, even if the machine where the money was deposited explodes. SMR
offers this because otherwise it would be fuzzy to define even the semantics of
tolerating a fault. So, when adapting the system we must assure that no request
is dropped from the history if a client already knows about its execution.

5.2 Configuration as a dynamic module

When talking about adaptations in the context of SMR, we can use its own
consensus module to execute the orchestration because the synchronization can
be made be deciding on the steps to perform. Lamport, Malkhi and Zhou[17] pre-
sented a method to produce algorithms for adaptation that uses the inter-replica
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agreement naturally present in SMR systems to decide on a new configuration,
using the already existing interface to propose commands. The agreement is de-
pendent on the configuration, so, to agree about a request i, all the processes
must be using the same configuration. So, to allow the processes to know how
to behave, a specification of the current configuration is kept in the system’s
state. To change it, there must be an agreement, so a new special request is in-
troduced, reconfigure(C), which specifies the new configuration C. So, when
reconfigure(C) is agreed upon as the request i, the configuration is set to C,
so from request i+1 and on this new configuration is used. This method is called
by the authors R1.

Nevertheless, if we aim to adapt the underlying protocol, developing a system
like this in practise would have some drawbacks. Firstly, it would be a complex
monolithic algorithm, due to be a composition of usually already complex SMR
algorithms, so it would be harder to develop and to prove correct than smaller
non-adaptive algorithms. On the other hand, it would be harder to extend to
keep up with the state of the art, probably becoming obsolete in a short time.
An alternative to this is using black-box switching.

5.3 Black-Box Switching

We designate by black box-switching the task of building a reconfigurable
state-machine from two state-machine implementations that have no support
for reconfiguration, not even any special command to put the state-machine in
a quiescent state.

In this context we say that a state-machine is reconfigurable if it accepts a
special command reconfigure(C,C ′) that can be applied to configuration C
to change the state-machine to configuration C ′. Since one aims at providing this
abstraction using state-machines that have no support for reconfiguration, the
solution consists in instantiating two different state-machines, a state machine
S1 running configuration C and another state machine S2 running configuration
C ′ and, at some point, start redirecting all request to the second state-machine.

There are two main challenges in this approach. The first is how to know
that is safe to stop using S1 and start using S2. The second is to avoid a long
hiatus, where no commands are processed, during the switching operation.

A naive look at the first problem could indicate that a simple, yet not efficient,
solution to the first problem would be to coordinate all nodes to stop submitting
commands to machine S1. When one is sure that new commands are no longer
being submitted to S1, one would simply wait for all commands previously
submitted are ordered, and then one could resume the operation by submitting
new commands to S2. Unfortunately, this strategy is only feasible in a system
with a perfect failure detector. In the general case, it may be hard to ensure that
clients and replicas that are not reachable have reached a quiescent state.

Due to the problem above, most solutions rely on using state machine S1
to define which is the last command to be ordered by S1. This is implemented
by issuing a special command that works as a marker. All commands that are
ordered after the marker can no longer be processed and need to be resubmitted
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to state machine S2. Note that this approach does not require S1 to be made
quiescent. S1 may still process commands after the marker, but the results are
ignored to prevent the duplicate execution of commands, so these need to be
re-processed by S2.

The approach above solves the first problem but does not address the effi-
ciency problem. In fact, a large number of commands may be affected by the
reconfiguration, being ordered after the marked and needed to be re-submitted
(to be re-ordered again) to machine S2 which may double the latency of com-
mand processing during the reconfiguration procedure. In the next paragraphs
we discuss some approaches to mitigate this problem.

5.3.1 Rα Lamport et al. presented an improvement to R1 so that it could
deal with parallel commands being decided after a reconfiguration happened.
This is, in the R1 approach, if the agreement i+ 1 was being agreed upon when
a reconfiguration was decided, at command i, i+1 would have to be resubmitted
to the new configuration, as after the reconfiguration no more decided commands
should be processed to ensure that it is not processed by both the old and the
new configuration.

In order to allow concurrent processing of requests, the state machine must
then delay the change of the reconfiguration when a reconfigure(C) is agreed
on. This is, if a reconfigure(C) is decided as the request i, the reconfiguration
only takes place after executing the request i + α − 1, being α the maximum
number of concurrent agreements running at a giving time. This allows for the
requests that are being agreed upon in parallel with thereconfigure(C) to use
the old configuration safely, because it is ensured that a reconfiguration request
will only affect processes that are not being decided concurrently. This method
is called Rα.

If it is necessary to make the reconfiguration take place immediately after
a reconfigure(C), this is, no request will be executed between deciding re-
configure(C) and the configuration taking place, α− 1 noop commands must
proposed right after the reconfigure(C). This can be batched in order to
consume the same resources as it was only one command.

However, this solution would imply buffering all the commands that arrive
during the reconfiguration time, so that they are then processed by the new
configuration. This would then cause an interruption on the processing of new
requests and a degradation in the quality of service due to a drop in the through-
put of operations done.

5.3.2 Run-time switching between algorithms Mocito and Rodrigues
[18] try to mitigate the problem of interrupting the processing of new messages
during an adaptation event by using an approach similar to the non interrupting
approach presented by Rosa et al. [16]. Despite of the work of Mocito et al. was
focused on changing between total order algorithms, we believe that the ideas
present in it can be adapted to SMR, as total order is recurrently a central piece
in the development of SMR systems. The main idea of the work of Mocito et aç.
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is to have both algorithms, the one that is currently running and its successor,
running simultaneously during the switching time (since the adaptation com-
mand is issued until the new configuration is fully functional). On a high level
view, to switch from algorithm A to algorithm B, the protocol works as follows:

1. A special message stating the intended switch is broadcast to all processes.
2. When a process receives this message, it starts using both protocols and

sends a flagged message notifying this. Although, until the switch is on the
final stage, only algorithm A messages are delivered. Algorithm B messages
are buffered in order.

3. When every process is using algorithm B, algorithm A is stopped. Then, all
messages from B that are buffered and were not delivered by A are delivered
in order. Finally, B starts operating as normal.

This approach effectively eliminates the downtime in service that would hap-
pen if a algorithm was stopped and then the new one was initialized. On the
other hand, this solution may introduce a significant overhead on network if the
protocols individually operate near the limit of the available bandwidth. This
happens because the network, in order to not become a bottleneck, must support
both algorithms running at the same time. Despite this, in the paper is discussed
an optimization to mitigate this issue that consists in sending only the headers
of the current algorithm (A) during the switch. So, this way, the payload is only
transmitted using the new algorithm (B), reducing the load on the network.

This solution leaves yet two problems to solve, it does not allow for concurrent
reconfigurations and it relies on a perfect failure detector. The first problem is
not really a concern to us, as we assume that the adaptation manager present
in the Abyss system will not send concurrent reconfiguration commands, as it
would be a source of overhead. The second issue is of major importance to us, as
we want to develop fault tolerant systems, we can not rely on a perfect failure
detector. In case of a replica crashing or getting mute, an switch would never
finish because there would be a replica never stating that it was already using
the new algorithm.

5.3.3 Building a reconfigurable state machine from non-reconfigurable
ones Bortnikov et al. [19] further explored this black-box approach, mitigating
the problem of having to resubmit some requests to the new configuration, like
Mocito et al., but under a crash fault tolerant paradigm. So, the authors of the
paper present a framework to develop a configurable state machine from non-
configurable ones, assuming only reliable communications (messages sent from
a process to another are eventually received) and a crash fault model. The work
focuses on the change of the set of replicas participating on the state machine
execution at a given point in time, this is, switching between non-reconfigurable
SMR implementations that work with a fixed number of replicas. Although, this
work can be extended to support the switch between SMR implementations that
not only can have different number of replicas, but also can execute in different
ways, having distinct patterns of communication, for example.

16



In this approach, the processes of the reconfigurable state machine must be
able to state that they are ready to start processing requests under the new con-
figuration. This is, upon reconfigure(C ′), the processes broadcast ready(C ′)
as soon as they are aware of it. When any replica receives ready(C ′) from a
quorum of replicas, then they start using the new configuration and state to all
active processes (under all configurations) that they changed its own configura-
tion with a new-conf(C ′) message.

Switching between different state machines generally carries the overhead of
transferring the state from one to another, in order to ensure total order. To
mitigate this overhead, this work is built on top of the premise that different
configurations ( i.e non-reconfigurable state machines) must be independent of
each other, so they can start operating from the initial state, independently of
the history of the previous configurations.

Another optimization introduced, leveraging the independence of the config-
urations, is the concurrent speculative execution of new configurations, as soon
as they are proposed, even if not already decided by the current configuration.
This way there is no need for resubmitting requests to a new state machine, as
every request that happened during the switching event was already submitted
to it. Although, a problem may arise if concurrent reconfiguration changes occur,
it would form a tree of commands and configurations (as in figure 2), instead of
a single ordering line, thus breaking the total ordering of commands. To solve
this, all replicas prune this tree in a deterministic way, by choosing always the
first reconfiguration decided to be the one that is kept in the global ordering as
the next. To inform this decision to the configurations that are being executed
speculatively, the state of each configuration is shared periodically among the
configurations, so they can prune the tree accordingly.

Although the dealing with concurrent reconfiguration requests is not a con-
cern for our work, this speculative approach reduces the delays of deciding and
starting a new configurations, specially under high-latency networks, mitigat-
ing also the need to buffer or resubmit commands that were being processed
during the reconfigurations. To ensure that there are no commands duplicated
by executing speculatively, the reconfigurable state machine only proposes new
commands to the currently operating state-machine configuration if no reconfig-
uration was already decided by that configuration. If some reconfiguration was
already decided, then, by design, some other state-machine implementation is
already responsible for ordering such commands,

To use this SMR algorithm in practise there is a need an additional compo-
nent, the Command Queue (CM). This component is responsible for associating
the clients’ commands with configurations, proposing it in the running configu-
ration or configurations, if concurrent speculative configurations are executing.
So, this component must be aware of the state of the active configurations in
the system, which does by keeping track of the ready messages, to know which
configurations are running at the time.
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Fig. 2. A tree of commands and configurations resulting of speculative execution in
Bortnikov et al. reconfigurable state machine approach. The edges correspond to the
history of commands executed between two configurations. The highlighted path cor-
responds to the history kept in the global history, being the other discarded at some
point.

5.4 Stopping adaptation

Despite the black-box approach was already proven as a feasible solution, it
would be easier if the different state machines had a stop primitive to put it in
a quiescent state. This way we can be sure that at some point in time a given
configuration has stopped, having a giving final state, and it would not process
further requests. This would allow for a simpler management of the adaptable
system, even under a fault-tolerant paradigm, as by design, it would be possible
to know when a machine has stopped and when it would be safe to send new
requests to other state machine.

The basic idea behind this stopping kind of adaptation is to send a stop-sign
to a given state machine, and then the state machine stops executing requests.
All the requests addressed to the machine will receive an answer stating that the
machine has stopped, and eventually some kind of pointer to the new one [17].
Once again, if multiple agreements are run in parallel further care must be taken.
The stop-sign would impair sending an execution guarantee to the client as soon
as the request is agreed upon, it would have to wait for all previous requests to be
executed, as the machine could stop before. In this case, like the Rα, a delayed
stop-sign must be used, so the stoppage happens after α agreement instances,
guaranteeing that no execution guarantee is violated.

In the same paper is also discussed another way to stop a machine, sending
infinite noop requests. This derives from the conceptual thinking of a machine
execution consisting in some finite non-noop requests followed by infinite noops.
This can be easily represented in finite manner, while using batching.

5.4.1 The next 700 BFT protocols These ideas of stopping the running
replicas and spawning new ones with a different configuration were explored with
a BFT mindset in Abstract [15]. The main idea is the development of several
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components, called Abstract instances, that, at a given time, one instance is run-
ning and providing service to the client, when some event of interest happens, an
adaptation event occurs and other Abstract instance takes its place. This adap-
tations event is a generalizations of a stop-sign, as it is a deterministic condition
checked by each replica themselves, it can be a stop-sign sent by another process
(e.g. the client) or any execution or environmental condition, as some time-out
or deciding a given amount of commands to be executed. Moreover, this solution
deviates from other BFT SMR, like PBFT and Zyzzyva, as it may abort client’s
requests.

More concretely, an Abstract instance implements a BFT protocol specialized
for the given system conditions, called progress conditions, as it only needs to
guarantee progress under that conditions. If progress conditions are not met
(i.e some assumed condition fails), the Abstract instance aborts, and other with
weaker system assumptions takes its place. Therefore, to guarantee the correct
functioning of the whole system, it is necessary to guarantee that no request
is aborted by all instances. As an example, it is possible to have an Abstract
instance that only makes progress when there are no faults, aborting otherwise,
in this case it is necessary to ensure that some other instance is capable of dealing
with faults, or a client would never get its request answered. As suggested by the
authors, this is usually achieved by using a robust well-studied BFT algorithm
as one of the Abstract instances.

The transition between instances is mediated by the clients, as they propagate
the history of an aborted Abstract instance to the next one. So clients need to be
aware of the adaptations happening in the server replicas, not only for interacting
with them correctly, but also to carry the state. The transition happens in three
steps: stopping the current instance, choose a new one and finally initializing the
chosen new one. As choosing what adaptation to do is out of the scope of this
work, so next we will describe in more detail only how an instance is stopped
and initialized:

1. Stopping the current Abstract instance: An Abstract instance stops
when it aborts the first client request, due to the violation of the progress
conditions. Along with the abort notification, an abort history is also sent.
The mentioned history contains, as prefix, the commit history of the instance,
and possibly some uncommitted requests.

2. Initializing the new Abstract instance: The client invokes the new Ab-
stract instance with the abort history of the previous instance. This history
is used to define the initial state of the instance, before it starts processing
new requests. Abstract does not need any explicit agreement to decide the
one common abort history among the replicas of an aborting instance. This is
possible because , by design, every abort history as the same commit history
as prefix, being this enough to make possible the guarantee of total order.

If switching through a client is a problem, in the context of some specific
system, it is possible to extend Abstract to allow switching through a compo-
nent responsible for the reconfiguration, or even to do the switch through the
replicas. In the first case, an aborting Abstract instance must send the abort
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notification and the abort history to the dedicated reconfiguration component,
and this component is responsible to invoke the new instance with the history
received. The latter case, switching through replicas, is possible by making each
replica act as a client, being able to send a noop command, it would mediate the
instance switching without making any modification on the state of the system.

Having this switching mechanism through the client, without any preemptive
action to start new Abstract instances could carry the weight of making a client
wait for the new instance to initialize, as opposed to the solution of Bortnikov
et al.

Abstract presents itself as powerful solution to facilitate the development of
adaptive BFT systems. It allows for better system qualities (e.g. throughput,
latency) by allowing the use of specialized protocols for each situation. On the
other hand, it alleviates the difficulty of developing BFT systems, by making
possible the development of several simpler modules, that as a whole implement
a full BFT system.

5.5 Further considerations

The problem of adapting algorithms in run-time is recurrent under different
contexts. In this section we will explore some interesting ideas on adaptations on
systems that were no developed to adapt SMR systems, but have some interesting
considerations abou adapting distributed systems in general, which can be used
in the BFT SMR context.

5.5.1 Multi-step algorithm switching Chen, Hiltunen and Schlischting
explored these ideas of non-stopping adaptation, and developed an architecture
and method to build a distributed system that is able to adapt between config-
urations gracefully [20]. In this approach, every adaptable component (e.g. total
order component) has several adaptation-aware algorithm modules (AAM) and
a component adaptor module (CAM). The first type of module is responsible to
provide some specific implementation for the module functionality. The CAM is
responsible for managing the adaptation of the module, this includes switching
safely between distinct AAMs, coordinating the change with the other replicas
in the system and detecting when and which adaptation should occur.

Generally, switching between algorithms in a distributed system must take
into account the messages flowing in the network, as they may end up being
received by a replica operating on a new protocol that does not recognize it. The
authors of the paper try to solve this in a seamless manner by using a three-step
change algorithm. Upon a adaptation event, the component prepares to receive
messages from the new AAM, as well as control messages for the switch-over pro-
cess. When all components across all replicas are prepared, they start processing
the outgoing messages with the new AAM. Finally, when all replicas are sending
messages with the new AAM, the component can stop receiving messages from
the old AAM. The AAM must be aware of the adaptation process, as it must
provide an API to execute the three steps described earlier. As both modules are
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active during the switch-over, incoming messages must be identifiable as being
from the old AAM or the new, this easily achievable by using specific headers
or a similar mechanism.

This approach presents itself has a modular and understandable approach
for reconfiguring a distributed system seamlessly, without stopping the whole
system in order to carry out change, being more general than Bortnikov’s et al.
approach and introducing less load on the network than the solution of Mocito
et al.. Nevertheless, it demands the algorithms used in adaptable components to
have awareness of the adaptation process. This way, the developer must adapt
the algorithms, what can be a drawback, because understanding some algorithms
implementation can be a hard and time-consuming task.

5.5.2 General vs specialized adaptors Couceiro explored the use of a gen-
eral stopping approach versus the use of specialized, custom built, non-stopping
switching mechanisms [21]. In this work, the authors implemented a framework
to allow the adaptation of protocols in the context of replicated in-memory
transactional systems. This framework allowed to have different reconfiguration
protocols to switch between algorithms, having a general ”stop and go” ap-
proach, as well as being able to support custom tailored mechanisms to switch
between two particular algorithms.

The ”stop and go” approach described by the authors demanded a given
protocol for replicated transactional systems to have a boot() primitive, that
initializes the said protocol from inactivity, and a stop() primitive that stops
the protocol, putting it in a quiescent state. On the other hand, the specialized
switching algorithms described take advantage of the particularities of the al-
gorithms. The solution presented used a similar approach to the one of Mocito
et al. [18], with both algorithms running at the same time during the transi-
tion. Although, it deviates from it because how and when each protocol really
processes requests is decided by the switching algorithm itself, so, they may be
running in parallel, but only one processing requests, for example.

A practical comparison between both approaches is presented in the paper,
and, as expected, the drop in performance when executing a custom switch
is much smaller than when compared with the general approach. This happens
because the specific approach leverages the white-box approach of the algorithms
to perform a switch without having to interrupt the processing of new requests,
or with very little interruption. The big downside of these specialized approaches
is that they demand for a deep understanding of the specifics of the algorithms to
be switched. Moreover, switching between some algorithms can be a very hard
problem to solve, if not impossible, due to incompatibilities that often occur
between different approaches.

5.6 Discussion

Building adaptive SMR systems switching among other (static) SMR im-
plementations as black-boxes seems a more feasible approach then developing a
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monolithic, complex and hard to manage and extend intrinsically adaptable SMR
algorithm. Nevertheless, this is done ate the cost of building an adaptation co-
ordination capable of performing the switch among two different state machines
efficiently while maintaining the correctness of the overall system. To ease this
coordination one could have the different state machines to be stoppable, this is,
being a stopping primitive to put them in a quiescent state, where it is guaran-
teed to make no further progress. Nevertheless, this implies the development of
such kind of algorithms, either from scratch or adapting already existent ones,
which can be a complex and costly task which a practitioner may not want to
endure. As an example, if we analyse the differences between Paxos [9] and a
stoppable version of it [22], we can see that deriving stoppable algorithms may
be not as trivial as it seems upon a first look.

When talking about adaptation of the underlying protocol in a SMR sys-
tems, the client usually needs to be somehow aware of the adaptations that are
happening in the server replicas, because, as discussed earlier, the client can play
different roles in different protocols, specially in BFT SMR. Messages flowing in
the network may also have incompatible formats, which can introduce further
challenges. As an example, if we use a black-box specific SMR implementation as
a configurable parameter of our adaptive the state-machine, switching between
a protocol that uses symmetric cryptography to another that uses signatures is
not trivial because messages already sent by clients in the older protocol can
not be processed in the new one. Given this, either the client gets its request
refused and must resend in a new message, much like the stop-sign approach,
or the message must be translated, which can be hard as the private key of the
client is secret. Therefore, we can denote that both non-stopping and stopping
approaches get very similar in this case. So, we can denote that the optimiza-
tions introduced by concurrently or speculatively ordering new commands under
a new configuration may not be useful to its full extent, as the client must resend
its request with a new format anyway.

In summary, both approaches, black-box and using stoppable algorithms, are
different paths to achieve a goal but, due to optimizations and implementational
details they can produce similar algorithms, as stated in [17]. So, discussing if a
non-stopping approach performs better than a stopping approach is complicated
because there is no comprehensive study comparing the two. Although we think
that the more specialized approach we take when doing a reconfiguration, the
least overhead will be introduced [21]. Therefore, in this work we will try to
implement several approaches, more general and more specialized, in order to
compare them in practise.

Deciding which configuration to use and when to do it is also a concern when
talking about adaptive systems. However, that is out of the scope of this work,
as it is part of the Abyss project, where these decisions will be made by other
components.
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6 BFT-SMaRt

There are available several open-source libraries to ease the development
of BFT SMR systems, namely UpRight [23], Archistar[24] and BFT-SMaRt[6].
The first was the first attempt, that we are aware of, of a library concerned
about simplifying the development of BFT systems. Although, these concerns
introduced a significant overhead in the performance of the system [6]. Moreover,
as of the date of the writing of this work, the library seems to not be maintained
any more, being the last release dated of the 27 of January of 2010. Archistar is a
compact BFT replication engine, although it is not easily extensible, because it is
a monolithic approach. As UpRight it is not currently maintained, and, moreover,
has very little documentation, which can make implementation problems harder
to solve, in the future.

Given this, in this section we will present BFT-SMaRt, which will be the
starting point of our work, because it is still maintained and it is highly modu-
lar, facilitating its extension. Besides this, some members involved in the Abyss
project have deep knowledge about it, making it easier to solve implementation
challenges, if they arise.

This library, implemented in Java, implements a BFT system similar to
PBFT. Although it deviates from PBFT, as it uses a modular approach, instead
of a monolithic one, to develop something more understandable and extensible.
To develop an application using BFT smart, a developer needs only to imple-
ment the usual invoke(command) on the client, and an execute(command) on
the server side, leaving all the responsibilities to ensure BFT to the library itself.
Besides this, if more complex behaviour is needed, BFT-SMaRt can be extended
using plugins, alternative calls and call-backs.

BFT-SMaRt is also able to add or remove replicas form a given system,
carrying out the state-transfer needed to initialize the new replicas. This state
capture and transfer is isolated in a layer between the replication protocol and the
application, so it does not influence the consensus algorithm. To carry out such
tasks three principles are used: logging the operations executed in the system,
taking snapshots of the progression of the system, in different points in time
at different replicas (so the system does not stop) and, finally, transferring the
state to fresh replicas in a collaborative fashion, with distinct replicas sending
different chunks of the state to the initializing replica.

The architecture of BFT-SMaRt, depicted in Fig. 3, has the following main
modules:

– Extensible State Machine Replication: responsible for implementing that ap-
plication.

– Mod-SMaRt and VP-Consensus [25]: responsible for implementing the SMR
mechanics, including total ordering.

– Reconfiguration Module: responsible for carrying out the addition or the
removal of replicas.

– State Transfer Module: responsible for initializing new replicas with the cur-
rent state, or even recovering the whole system.
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Fig. 3. The architecture of BFT-SMaRt

BFT-SMaRt was used in a work already done in the area of BFT protocol
adaptation [26]. In this work, Sabino, developed an architecture, based on BFT-
SMaRt, to develop adaptable BFT SMR systems, including a component to
monitor the environment of the system and an adaptation manager, that reacts
upon the happening of certain events, like a change in the network conditions.
Despite this, the adaptations explored in this work are changes in protocol pa-
rameters like the batch size and the number of replicas, not discussing the main
concern of our work, protocol commutation.

7 Architecture

We will developing a modular architecture able to support both black-box and
stopping algorithm approaches, where where several implementations of BFT
SMR will be seen as a configuration parameter of the system. This way it will
be possible to implement solutions using both approaches in order to compare
and rationalize about them. Nevertheless, the main goal is to find a strategy to
switch between this algorithms introducing as little overhead as possible, not
only during the switch, but also in the normal operation.

The system will be built on top of the BFT-SMaRt architecture, where the
Mod-SMaRt (and VP-Consensus) will be replaced by a module capable of switch-
ing between different algorithms on-the-fly. Remember that the Mod-SMaRt is
the module responsible for implementing the state machine behaviour and com-
munication pattern between its replicas, this is, roughly, total-ordering the re-
quests and maintain the state consistency. We will leverage the modularity of
BFT-SMaRt with regard to having the different algorithms sharing the same
replica state, so the need for state transfer between two algorithms upon an
adaptation is reduced.

Unlike solutions like [20] or Abstract, the adaptation manager will not be
responsible to know what neither when to adapt. As this work is part of the
Abyss project, this responsibility is relied upon another system, which is being
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developed in parallel. So, the focus of this solution is on how to perform adapta-
tions suggested by another system, specially on how to switch between different
SMR protocols. We assume that if a configuration is suggested by a configura-
tion proposer component, then it the same configuration is proposed to all of
the replicas of the system. A view of the architecture is described in Figure 4.

Fig. 4. The architecture of the adaptable SMR module to be implemented

The adaptable SMR component will encapsulate the state machine behaviour
as an interchangeable algorithm, having an adaptation coordinator to manage
this said behaviour on-the-fly.

7.1 The adaptation coordinator

The adaptation coordinator is responsible for processing the requests for
adaptation that come from outside the system, run synchronization on adapta-
tions among system replicas, if necessary, and, finally, to perform such adapta-
tions. The coordinator will be act as a proxy both for incoming requests from
clients to the system and for the delivery of the decided values by the agreement
algorithm to the service execution. This will allow for the coordinator to deliver
the requests to the intended agreement algorithms and to control which decided
requests are delivered to execution, as they may be delivered by two different
algorithms. In short, this mediation of communication will allow the coordina-
tor to infer the state of the current configuration, so that the adaptation can
be performed safely. This module can perform the switch in different ways, the
most immediate and general approach is to fully stop the current algorithm and
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then boot up the new one, but this would introduce a harsh loss of performance
during the switch. To minimize this, it is possible to have both algorithms run-
ning simultaneously and stop the old one only when the new is fully functional,
like in the works described in [18] or [19]. Yet another possible implementation
is to make a three step change, like described in [20], or even build fine tuned
coordination between two specific protocols [21]. So, several approaches on the
implementation will be carried out, in order to compare and rationalize about
them in practise. The reconfiguration module already present in BFT-SMaRt is
going to be incorporated in the coordinator, so the adaptations that are already
possible to be made (e.g. changing the replica set) stay available under the new
architecture.

7.2 The Client

The client will also need to be aware of the adaptation, as its own behaviour is
dependent of the implementation of the state machine, like for example Zyzzyva
relies on clients to detect misbehaviour of the state machine replicas. As well,
the pattern of communication and the decision of stable answers is very different
between crash fault tolerant and BFT systems. A representation of the client’s
modules is depicted in Figure 5. When a client tries to send a request to the
state machine using an old behaviour, that is no longer in use, the interface of
the adaptable SMR will inform that the request must be made using the new
protocol. To avoid that a faulty replica can be lying to the client, always refusing
its requests, the client shall contact all the replicas in the system to be informed
of the system configuration upon a refused request. Nevertheless, when changing
between two algorithms with equivalent request messages, this is, that can be
translated from one to the other, the adaptation coordinator can do this, instead
of aborting the client request.

A threat to the liveness of the system may arise because a given client can
be always using an old protocol, if the state machine is switching it very often.
To mitigate this, the adaptation coordinator must limit the frequency of adapta-
tions, taking into account the delays in the network, to ensure that under partial
synchrony, all clients will eventually may be using the same protocol as the state
machine replicas. However, if the request messages are translatable between the
different SMR implementations this problem is also mitigated, as the coordina-
tor is able to translate it, so a request made to an inactive behaviour can be
translated to the currently active and processed by it.

7.3 Some strategies supported by the architecture

In this subsection we present a brief description of how some strategies can
be carried out in our architecture:

– Stop and go with stoppable algorithms: Using a stoppable algorithm,
performing a ”stop and go” approach is straightforward. Upon receiving a
reconfigure(C,C ′), the coordinator sends a stop-sign to the state machine

26



Fig. 5. The architecture of the adaptable client module to be implemented

C. Upon receiving the information that the operating machine agreed on
stopping, all further commands would be addressed to the state machine
implementation C ′. Upon making requests, the clients are informed about
the change in the configuration, so they start processing answers in the
context of C ′, behaving accordingly to the algorithm pattern.

– Stop and go without stoppable algorithms: Without a stoppable al-
gorithm, further care must be taken to decide when its safe to switch from
on configuration to another. The most immediate way is to send a marked
message upon the reception of a reconfigure(C,C ′), so that message is
the last message decided by configuration C and the subsequent ones are
responsibility of configuration C ′. Messages decided by C after the marked
message are simply ignored. Of course, if multiple agreements run in paral-
lel, we must only shift the ordering of messages between configurations after
some more messages are ordered after the marked one, as discussed in 5.3.1.

– Speculative execution of new configurations: One could also imple-
ment a solution similar to the one described by Bortnikov et al. Upon receiv-
ing reconfigure(C,C ′), the state-machine C ′ would be promptly started
and a message stating this would be broadcast to all other replicas (through
the coordinators) and a special marker would be sent for ordering in C.
Upon having received a quorum, this is, in a BFT paradigm, usually 2f + 1
messages, from other replicas stating that they are ready to run the new
configuration, a replica can start ordering commands under the new config-
uration C ′. Note that this commands are posterior to the reconfiguration
one. Finally, when C decides the special configuration command, no further
commands are sent to it, and then all the speculatively decided by C ′ com-
mands can be executed on the execution service, after the ones decided by
C.

7.4 Limitations of this solution

Some BFT SMR approaches are not fully supported by this architecture. As
an example, Aardvark’s replicas use independent NICs for clients and for every
other replica. To support this, the communication layer of BFT-SMaRt would
need to be replaced.
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The problem of overloading the network when executing several protocols
concurrently is not addressed by this solution. Nevertheless, we think that is
possible to implement some network load conservative strategies with the present
solution.

8 Evaluation

8.1 Performance of the adaptation

The performance of the adaptations will be evaluated by measuring different
metrics during the switching time, using different approaches on how te adapta-
tion is carried out. The first one is going to be the time of unavailability to answer
to requests (if there is a period where no algorithm is making progress), as we
aim to have a system capable of adaptations that take little to no downtime.
The throughput is another key performance metric, as even if there is no down-
time a significant drop in throughput may not be tolerable in some systems. The
bandwidth consumed by the adaptation coordination is also an important factor
to take into account, as it may be a limiting factor, if the SMR implementation
operates near the maximum bandwidth available.

This measurements will be taken both when the system is running under
favourable conditions and under more unstable conditions. This is, both when
the network is stable and there are no failures in the replicas, and when there is
starvation in the network, or packets are being lost often or even when there are
failing replicas. We think evaluating the system in both situations is relevant, as
the first reflects a use case when the adaptation is performed preemptively, and
the latter reflects a case of an adaptation that is taken when a system is already
suffering of performance issues.

8.2 Usefulness of the adaptive system

We will measure the usefulness of this work by comparing the behaviour of
an adaptive system built from our solution with a static SMR implementation.
The tests will be made under a stable workload, workload changes and even
other environmental changes, as an increase in the latency of the network (which
happens often in wide-area networks) or the presence of malicious Byzantine
clients.

We expect that under a stable workload our system will be slightly less
performant than a fitting static SMR implementation is chosen. Although we aim
to minimize it, the adaptability of the system will always carry some overhead
due the extra processing and messaging necessary to support such adaptations.

We hope that under workload and environmental changes, our system will
surpass the performance of some static approach. To measure this, we will mea-
sure the throughput of requests answered under a given workload and given
adaptations. As this system has no capability to decide when and what adap-
tations to perform, we will mock a system that will provide such suggestions of
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change. We will make an effort so the workload changes and the adaptations
performed depict realistic use cases and provide meaningful data to rationalize
about. The environmental changes will be injected during the tests, developing
clients that will try to render the system slow or even unusable, as well as com-
ponents in the network to introduce delay and instability, trying to simulate
wide-area or lossy networks.

9 Scheduling of Future Work

Future work is scheduled as follows:

– January 9 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

– March 30 - May 3: Perform the complete experimental evaluation of the
results.

– May 4 - May 23: Write a paper describing the project.
– May 24 - June 15: Finish the writing of the dissertation.
– June 15 Deliver the MSc dissertation.

10 Conclusions

The use of Byzantine fault tolerant systems is becoming more and more
relevant, not only because computer systems tend to deal with highly critical
data and decision, but also because the deliberate attacks and arbitrary faults
are becoming more prominent. To deal with this, a lot of BFT solutions were
developed, each one trying to surpass the performance and resiliency of its pairs.
Although, the optimizations done always carry some kind of trade-off, making
hard to develop a system that is best for all kinds of usages and environments.

To leverage the advantages of all the BFT solutions already developed we
propose a BFT SMR system that is capable of switching between different pro-
tocols on-the-fly. This way, at any given point in time, is possible to have the
best BFT protocol running for the current environment (workload, existing fail-
ures, network conditions, etc.), without the need for a human administrator to
manually shut-down the system and reboot under a new configuration.

We have presented a view of the architecture of the proposed solution, as well
as how we intend to test and validate it. Its detailed specification, implemen-
tation and evaluation will be done as future work, accordingly to the schedule
already presented.
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