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Abstract

This paper presents a new fault-tolerant clock synchronization algo-
rithm designed for the Controller Area Network (CAN). The algorithm
provides all correct processes of the system with a global timebase, despite
the occurrence of faults in the network or in a minority of processes. Such
global time-frame is a requirement of many distributed real-time control
systems.

Designing protocols for CAN is justi�ed by the increasing use of this
network in industrial automation applications. CAN owns a number of
unique properties that can be used to improve the precision and per-
formance of a clock synchronization algorithm. Unfortunately, some of
its features also make the implementation of a fault-tolerant clock syn-
chronization service a non-trivial task. Our algorithm addresses both the
positive and the negative aspects of CAN.

1 Introduction

The availability of a global timebase in all correct processes, despite the occur-
rence of faults in a minority of processes or in the network itself, is a require-
ment of many distributed real-time control systems. For instance, synchronized
clocks can be used for the synchronization of external actions, distributed trace
of events, measurement of actions that spawn multiple processes and the devel-
opment of (higher level) fault-tolerant distributed algorithms.

A common solution for the global time-base problem consists in using the
node hardware clock to create a virtual clock at each process, which is locally
read. All virtual clocks are internally synchronized by a clock synchronization

algorithm. Surveys of existing clock synchronization algorithms can be found
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in [17, 13]. Clock synchronization algorithms di�er on issues such as the precision
they achieve (i.e., how far clocks can be from each other), number and type
of tolerated faults, number and size of messages exchanged, etc. Naturally,
the solution for clock synchronization deeply depends on the properties of the
underlying network.

The Controller Area Network (CAN) [14, 8] is a communication bus for mes-
sage transaction in small-scale distributed environments. Originally designed to
reduce cabling complexity and saving wiring costs in automotive applications,
CAN gathers nowadays an increasing acceptance in other areas, like control and
automation. In the design and implementation of real-time distributed control
systems, CAN represents a very cost-e�ective �eld-bus solution for real-time
sensing and actuating in harsh environments with strict timeliness and reliabil-
ity requirements.

This paper presents a new clock synchronization algorithm designed for
CAN. The paper discusses the CAN properties that can be used to improve
the precision of clock synchronization and the properties that make the imple-
mentation of a fault-tolerant version of such service a non-trivial task. The
algorithm can be implemented exclusively in software, tolerates process and
network faults, and provides precision and accuracy preservation in the order
of a few microseconds. The algorithm is inspired of the generic a posteriori

agreement algorithm for broadcast networks [22, 23] and of a non fault-tolerant
algorithm specially designed for CAN [4], but di�ers signi�cantly from these al-
gorithms. We have named our new algorithm \phase-decoupled" a posteriori

agreement.
The paper is organized in three major parts. The �rst part provides the

background: Section 2 provides a brief description of CAN operation, discussing
its relevant properties; Section 3 introduces the clock synchronization problem;
related work is surveyed in Section 4. The second part describes our work: the
design approach is sketched in Section 5; a straightforward implementation of
the a posteriori agreement on CAN is described Section 6; the new \phase-
decoupled" a posteriori agreement algorithm is presented in Section 7. The
last part is concerned with improvements and performance issues: use of CAN
message priorities is discussed in Section 8 and the performance is analyzed in
Section 9. Section 10 concludes the paper.

2 Controller Area Network

CAN is a bus with a multi-master architecture [14, 8]. The transmission medium
is usually a twisted pair cable. The network maximum length depends on data
rate; typical values are: 40m @ 1 Mbps; 1000m @ 50 kbps. Bus state takes one
out of two values: recessive, which only appears on the bus when all the nodes
send recessive bits; dominant, which only needs to be sent by one node to stand
on the bus.

Any message sent by a CAN node must be tagged with a network-wide
unique identi�er. Access control to the shared bus uses a carrier sense multi-

access with deterministic collision resolution (CSMA/DCR) scheme. Bus ac-
cess conicts are resolved through the bitwise comparison of message unique
identi�ers: if the transmitted identi�er bit is recessive and a dominant bit is
monitored, the node gives up from transmitting and starts to receive incoming
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CAN1 - Validity: if a correct node broadcasts a message, then the message is
eventually delivered to a correct node.

CAN2 - Best-e�ort Agreement: if a message is delivered to a correct node, then
the message is eventually delivered to all correct nodes, if the sender remains correct.

CAN3 - At-least-once Delivery: any message delivered to a correct node is de-
livered at least once (a message is automatically retransmitted if an error occurs).

CAN4 - Non-triviality: any message delivered to a correct node was broadcast
by a node.

CAN5 - Bounded Transmission Delay : the time elapsed between the request
of a broadcast and the corresponding message delivery at any correct node is bounded
by two known values �min < �max.

CAN6 - Tightness: if the sender remains correct, the last retransmission of the
same message is delivered to any two correct nodes at real time values that di�er, at
most, by a known interval ��tight.

Figure 1: CAN Properties

data; the node transmitting the message with the lowest identi�er goes through
and gets the bus. If the arbitration process is lost, a new attempt to send the
message is made when the bus is released.

The CAN network can be modeled by the set of properties summarized in
Figure 1. We note that only the properties relevant for clock synchronization are
listed: a more precise model can be found in [16]. Properties CAN1 to CAN4 are
a consequence of the comprehensive set of error detection, error signaling and
error recovery features of the CAN network. Messages corrupted by errors are
discarded at correct receivers and automatically submitted for retransmission
by a correct sender. This procedure secures property CAN1. Unfortunately,
it also allows the same message to be received by a correct node more than
once [16] (property CAN3). When no CAN protocol violation is detected until
the last but one bit of a message, any correct receiver will always locally accept
that message, even if the following bit gets corrupted. Conversely, a correct
sender will consider such corruption an error and it will retransmit the message.

Properties CAN5 and CAN6 describe system behavior in the time domain.
Ensuring property CAN5 depends on multiple factors: tra�c patterns, la-
tency classes and o�ered load bounds, as well as their relation with CAN mes-
sage identi�ers[20, 24]; error patterns and maximum error recovery latency [15].
Property CAN6 is crucial for achieving a high precision on synchronized clocks.
The upper bound of message reception real time variance (��tight) has two dif-
ferent contributions [10]: the maximum variance on the network physical prop-
agation delay ��prp; the maximum variation of message processing time at any
correct receiver, ��rec. By correct design, ��rec can be bounded by values
in the order of a few microseconds (some controllers o�er dedicated support to
minimize this bound [21]). On the other hand, CAN is particularly advanta-
geous with regard to variation of ��prp: the bus transmission line is operated
in a quasi-stationary mode, giving enough time for bit signal stabilization along
the bus before performing sampling. The exact value of ��prp depends on the
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PC - Physical clocks; VC - Virtual clocks
(for some positive constants � and �, 8k;l 2 P)

PC1- Initial value,
pck(0): 0 � pck(0) � �

PC2- Rate,
9�: 0 � 1� � � pck(t2)�pck(t1)

t2�t1
� 1 + � for 0 � t1 < t2

VC1 - Precision,

9�v: jvck(t)� vcl(t)j � �v for 0 � t

VC2 -Rate,

9�v: 1� �v �
vck(t2)�vck(t1)

t2�t1
� 1 + �v for 0 � t1 < t2

VC3 - Accuracy,

9�v: jvck(t)� tj � �v for 0 � t

Figure 2: Summary of Clock Properties.

bus lenght and on network con�guration parameters, but it is always a small
fraction of the network bit time (10%-30%).

3 Clock synchronization

The goal of clock synchronization is to establish a global timebase in a dis-
tributed system composed of a set of processes P which can interact exclusively
by message passing. Processes can only observe time through a clock. One com-
monly used solution to achieve this goal is to provide each process p (p 2 P)
in the distributed system with an imperfect physical clock pcp (notation closely
follows that of [17]). The clock at a correct process p can then be viewed as
implementing, in hardware, an increasing continuous1 function pcp that maps
(non-observable) real time2 t to a clock time pcp(t). Through a clock synchro-
nization algorithm it is possible to derive, from the physical clock at each process
p, a virtual clock vcp satisfying the precision (VC1), rate (VC2), and accuracy

(VC3) properties, presented in Figure 2.
Precision �v characterizes how closely virtual clocks are synchronized to each

other, �v is the drift rate of virtual clocks. Accuracy �v characterizes how closely
virtual clocks are synchronized to real time. Due to the nonzero drift rate of
physical clocks, accuracy cannot be ensured without some external source of real
time. However, a good algorithm should maintain clocks as close as possible to
the best real time source available, which may be one of the correct clocks in
the system. In that sense, minimizing3 �v, should preserve accuracy, and that

1It is known that digital clocks have a �nite granularity and increase by ticks [10]. However,
for sake of clarity, we chose to simplify our expressions in this matter.

2In an assumed Newtonian time frame.
3In any case, limited to � [18].
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term will be used in this paper when informally discussing these attributes.
Since physical hardware clocks can be permanently drifting from each other,

virtual clocks must be resynchronized from time to time. A clock synchroniza-
tion algorithm should then be able to: (i) generate a periodic resynchronization
event. The time interval between successive synchronizations is called the resyn-
chronization interval, denoted T ; (ii) provide each correct process with a value
to adjust the virtual clocks in such a way that precision and rate hold. The clock
adjustment can be applied instantaneously or spread over a time interval. In
both techniques, for the sake of convenience, the adjustment is usually modeled
by the start of a new virtual clock upon each resynchronization event [5, 17].

The worst-case clock precision �v is obtained by adding to the precision �vi
achieved with the synchronization the drift between clocks during the resynchro-
nization interval T , that is �v = �vi+2�T . The physical clock drift � is typically
of the order of 10�4 to 10�6 and the resynchronization interval T can be se-
lected such that the desired precision is guaranteed. If the algorithm exhibits
a good precision enhancement property a longer resynchronization interval can
be chosen.

4 Related work

Software based clock synchronization protocols can be fully generic or tailored
for certain classes of networks. In this paper we are looking for solutions that
can exploit the CAN properties mentioned in Section 2, namely the ability to
generate a \simultaneous" event through the broadcast of a message. Thus we
will concentrate our attention on two algorithms that are targeted for networks
with these properties.

4.1 A posteriori agreement

The a posteriori agreement for clock synchronization [22, 23] is a technique that
uses tightness property of some networks (see CAN6) to avoid the inuence of
the network access delay variability on the precision of virtual clocks. An aim
of the a posteriori agreement technique is to improve precision by making the
clock synchronization algorithm depend on ��tight, instead of depending on the
variance of message delivery (�� = �max��min, according to property CAN5)
or on the worst-case message delivery (�max). The improvement on clock pre-
cision is high because ��tight << �� (note that �� also includes the network
access delay variance).

Synchronization starts with each process disseminating a start message at
a pre-agreed instant on its clock. Reception of start messages trigger the start
of a new virtual clock. Note that, due to process or network faults, not all
broadcasts will be received by all correct processes. Thus, clocks triggered by
a start message must be kept merely as candidates for synchronization until an
agreement is obtained on a broadcast yielding high precision. This agreement
can be used to select an adjustment to the absolute value of the elected clock,
in order to yield the best accuracy preservation possible. Since the agreement is
executed after the candidate virtual clocks have been started, the algorithm was
called a posteriori agreement. As a consequence of this approach, the resulting
precision is mainly limited by ��tight and marginally by the time required to
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reach agreement (�max
agreem). The precision achieved by the a posteriori agreement

algorithm was proven [22, 23] to be limited by:

�vi � (1 + �)��tight + 2��max
agreem

The general algorithm is communication and agreement protocol indepen-
dent, i.e., the choice of di�erent communication infrastructures and agreement
protocols would lead to di�erent implementations of the algorithm. An imple-
mentation of the a posteriori technique for local area networks such as Ethernet
and Token-Bus has been proposed [23]. However, the bandwidth and message
size required by such implementation is not supported by the maximum data
�eld size (8 bytes) allowed in CAN messages. Our work departs from designing
a specialization of the original a posteriori protocol that de�nes an agreement
protocol tailored to the CAN network.

4.2 CAN oriented algorithms

Gergeleit and Streich have proposed a clock synchronization algorithm for CAN
based on a master-slave con�guration [4]. The algorithm can be seen as a non
fault-tolerant implementation of the a posteriori agreement approach. The mas-
ter periodically emits a start message that triggers the start of a new virtual
clock in all the slaves. CAN properties guarantee that, if the master survives,
these virtual clocks are precise. Accuracy is achieved by calculating the ad-
justment a posteriori. Since the algorithm is not fault-tolerant, no agreement
protocol needs to be executed. The master sends an absolute clock value based
on its own measurement of the delay incurred for the dissemination of the start

message (typically, the master will be connected to an external source of time)
and all slaves adjust their clocks accordingly. To reduce tra�c, the master refer-
ence value required for the adjustment is piggybacked in the next start message.

A positive aspect of this algorithm is its low bandwidth consumption. A
single message at every synchronization round is enough to keep the clocks syn-
chronized. The major drawback is its complete lack of tolerance with regard
to the failure of the master process. To overcome this drawback it was sug-
gested to use multiple cooperating masters using a token-based approach; in
each synchronization round a di�erent master would be responsible for ensur-
ing synchronization [1]. Unfortunately, since CAN does not guarantee reliable
delivery when the sender fails [16], it is possible for a failed master to leave the
system in an inconsistent state.

4.3 Other approaches

A major limitation of all known software clock synchronization algorithms de-
signed for arbitrary networks, is that precision is limited either by the variance
of the message delivery delay [12], or worse, by its upper bound [18]. This prob-
lem may be minimized with hardware support, either by implementing clock
synchronization exclusively by hardware [7, 11] or by using hybrid schemes [13]
which attempt at reducing that variance, for instance, using clock synchroniza-
tion units that are able to timestamp messages [9] and receive GPS signaling.
Although designing speci�cally for CAN, our goal is to allow the use of \o�-the-
shelf" components. Statistical techniques can also be used to minimize the e�ect
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of the network variance [2]. The work of [3] provides an interesting integration
of internal and external clock synchronization but, being based on remote clock
reading, it is not clear how it can be adapted to exploit CAN tightness.

5 Design overview

The CAN owns a number of characteristics that o�er the potential for achieving
highly precise clock synchronization, in particular it exhibits a network tightness
in the order of a few microseconds and built-in error handling facilities. On
the other hand, it has a low bandwidth (compared with today's LANs) and
supports only small messages which favors simple protocols. Also, only best-
e�ort agreement is provided (i.e., in case of sender failure the message may
be received by just a subset of the nodes) which di�cults agreement on clock
values.

As seen in the previous sections, some clock synchronization algorithms have
been designed speci�cally for CAN. However, these protocols exhibit limited
or no fault-tolerance features, having thus limited applicability for dependable
applications. On the other hand, most of the generic algorithms described in
the literature cannot make explicit use of the unique (positive) features of CAN.

The a posteriori agreement approach seems suitable for CAN since the pre-
cision achieved is in the order of the network tightness. Our work is based on
the idea of applying the a posteriori technique to CAN. However, limitations
of a straightforward implementation of this technique, lead us to develop a new
algorithm, particularly suited for the CAN network.

6 What's missing for a posteriori agreement on

CAN

To motivate the need for a new algorithm, we describe �rst a straightforward
implementation of the a posteriori agreement technique for CAN. The algorithm
is obtained by enhaning the generic a posteriori algorithm described in [22, 23]
with a CAN-speci�c agreement protocol. The proposal of an agreement protocol
suited to CAN is also a contribution of this work.

The resulting algorithm o�ers excellent precision and requires only two
phases of message exchanges. On the other hand, it requires a large number of
messages in the �rst phase and does not provide good accuracy. A run of this
basic algorithm requires at least n(n+1) messages; in the next section, we will
describe an algorithm that lowers the number of messages required down to 3n.

The algorithm is fully decentralized. In order to tolerate f faults, at least
2f + 1 processes must try to generate a simultaneous event (for clarity, we will
simply assume that all processes try to do so). No matter how many processes
trigger the synchronization algorithm, all correct processes need participate in
the agreement to select one of the simultaneous events as the source of the clock
for the next synchronization interval. We assume that there is a total order of
the processes identi�ers; this order is used to rank votes on the agreement phase
of the algorithm.

A pseudo-code description of the algorithm is given in Figure 3. Let T denote
the resynchronization interval. Each period is initiated by a process p when its
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virtual clock reaches iT , the time for synchronization round i, by broadcasting
a hstart, ii message on the network (l. 107). If the sender does not fail, CAN
guarantees that this message will be eventually received by all correct processes
at approximately the same time (properties CAN2 and CAN6). Note however,
that the occurrence of faults may lead to message retransmission by the CAN
protocol \cast in silicon". Thus, duplicates of the same hstarti message can
be received (property CAN3). Each time a start message is received a new
candidate clock is started (duplicates restart this clock). Typically, several
processes will send a start message at approximately the same time. Only tight
events may be eligible as candidates. In CAN, only the sender can detect reliably
when a message is delivered to all correct processes. Thus, only the sender can
safely propose its own message (and associated clock) as a valid candidate.

When a new candidate clock is started, it is started with some dummy
pre-de�ned value (l. 113). In fact, candidate clocks may be precise but are
inaccurate because there is a variable and unpredictable delay in the dissemi-
nation of the start message. At the end of the agreement, the selected clock is
adjusted to a value that best preserves the accuracy. In this basic algorithm, this
adjustment is computed by the sender of the associated start message, based
on the local measurements, at each process, of the virtual time at which the
corresponding message was locally received. Let rti;p denote the reception time
of the h start, ii message from p, according to vci�1q . In order to make this
information available at the sender, every hstart, ii message is acknowledged
directly to the sender p by every process q, with an hack, i, p, rti;pi message (l.
119).

The protocol proceeds with a second phase of message exchange where the
processes agree on which candidate clock should be used for the next round.
This phase is initiated by a sender p when: it detects the succesfull transmission
of its own start message; at least f + 1 start messages have been received; it
has received all the associated ack messages or the correponding AckTimer has
expired (l. 124). When these conditions are satis�ed, the sender computes the
adjustement for its own clock, by selecting the median value of the receive times
returned in the ack messages and broadcasts a hvote, i, p, �adjust;pi message
(l. 132). When another process q receives the vote message, it con�rms this
choice by sending a similar vote message (l. 140). In the best case, all processes
vote on the same candidate clock and this phase ends as soon as the same vote
is received from every correct process (l. 142). If two or more senders receive
(approximately at the same time) the con�rmation of the transmission of their
own start messages, concurrent votes for di�erent candidates will be issued. In
this case, the vote with higher rank is preferred (this means that a process may
change its vote during this phase). This voting protocol is similar to the election
algorithm described in [19]. It should be noted that the adjustment computed
by this algorithm may be inaccurate because there is no way to match the
acknowledgement (that carry the values needed to compute the adjustment)
with the appropriate retransmission of the start message (that triggered the
clock being adjusted). Our new protocol adresses this aspect.

The protocol is further complicated due to the possibility of process failures.
In such case, some ack or vote messages will be missing. To prevent deadlock, a
simple timeout mechanism is used in both phases: if an ack (or vote) message is
missing after a pre-de�ned time limit the faulty processes are marked as failed.
Note that the CAN properties guarantee the reliable and timely delivery of

8



100 //variable description
101 // votedi: voted candidate.
102 // RT i[]: reception times.
103 // �i: adjustment for this candidate.
104 // startsi, acksi, and votesi: counters
105 startsi := 0; acksi := 0;
106 votedi := NONE;

107 when vci�1(NOW ) = iT

108 and votedi = NONE do

109 broadcast (hstart, ii);

110 when received S=hstart, ii from q do

111 rti;q := vci�1 (NOW);
112 // start new candidate clock
113 cci;q (NOW) := 0;
114 if not-duplicate(S) then startsi := startsi + 1;
115 if p = q then // my own start message
116 acksi := acksi+1;
117 RTi[p] :=rti;q

118 else

119 unicast (hack, i, rti;qi);
120 if notstarted(AckTimer) then start(AckTimer);

121 when received A=hack, i, rti;pi from q 6= p do

122 RTi[q] :=rti;p

123 if not-duplicate(A) then acksi := acksi + 1;

124 when transmission-con�rmed (hstart, ii)
125 and startsi � f + 1
126 and (acksi = N or expired(AckTimer))
127 and votedi = NONE do

128 N := acksi;
129 votedi := p;
130 votesi := 0;
131 �i := median(8xRT i[x] > 0);
132 broadcast(hvote, i, p, �ii);

133 when received V=hvote, i, v, �v i from q 6= p

134 and not-duplicate(V) do
135 if not-started(VoteTimer) then start(VoteTimer);
136 if rank(v) > rank(votedi) then do

137 votedi := v;
138 votesi := 1;
139 �i := �v;
140 broadcast(hvote, i, v, �vi );
141 if votedi = v then votesi := votesi +1;

142 when expired(VoteTimer) or votesi = N
143 and votedi 6= NONE do

144 vci := cci;voted
i

+ �i;
145 N:= votesi;

Figure 3: A posteriori algorithm for CAN
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messages when the sender is correct. Thus, the protocol embodies a minimal
fault-detection functionality that can be provided as input for a complementary
membership service.

Assume that all processes issue a start message. According to the a posteri-

ori agreement algorithm, all processes must acknowledge these start messages.
Finally, in the best case, all processes vote on the same candidate clock. Thus,
the protocol requires at least n start messages, each requiring n�1 acknowledge-
ments and n additional vote messages, for a total of n+n(n�1)+n = n(n+1)
messages. The worst-case is much higher than this: start messages may need to
be retransmitted and all retransmissions need an acknowledgement from every
process; several processes may concurrently vote for their own candidate clock,
resulting in a cascade of voting messages. In the next section, we will present a
\phase-decoupled" algorithm that alleviates these problems.

7 The new \phase-decoupled" a posteriori al-

gorithm

The \phase-decoupled" a posteriori algorithm addresses the drawbacks of the
basic a posteriori algorithm in face of the properties of the CAN network, namely
the large number of acknowledgement messages, the potentially large number
of concurrent votes, and the inaccuracy of clock adjustments (due to automatic
retransmissions). These problems are solved using di�erent mechanisms.

In the original a posteriori agreement protocol, acknowledgement messages
are used for two di�erent purposes: to disseminate reception times (used to
compute the adjustment) and to ensure (and detect) reliable delivery of the
start message. In CAN, reliable delivery is guaranteed as long as the sender
remains correct. Thus, acknowledgements are only needed to disseminate re-
ception times. The proposed modi�cation is based on the observation that
only the selected clock needs to be adjusted and that the number of messages is
strongly reduced if the reception times for the other clocks are not disseminated.
This can be achieved by voting on the candidate clock before the acknowledg-
ment phase. Since reception times are no longer available at voting time, the
reduction on the number of messages is achieved at the cost of \decoupling" the
start phase from the adjustment computation phase (which are overlapped in
the simple protocol), thus the name of the new protocol.

Decoupling these two phases has another advantage in terms of accuracy
of clock synchronization. Since acknowledgements are only produced when the
start is stable (i.e., when it has already been successfully transmitted), all dis-
seminated reception times refer to the last correct transmission. This allows the
�nal adjustment to be computed based on accurate reception times.

The problem of concurrent votes is a consequence of the precision of clock
synchronization. Since all clocks exhibit approximately the same time, all pro-
cesses will reach iT at approximately the same real time, all processes will send
a start message concurrently, and so on. Although the network will enforce a
serialization of all these messages, the delays incurred by such serialization are
not enough to prevent concurrent executions. It should be noted that, with
most existing CAN controllers, it is di�cult to cancel in due time a message
submitted for transmission. In the \phase-decoupled" algorithm this problem is
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200 //variable description
201 // votedi : voted candidate.
202 // RT i[]: reception times.
203 // �i: adjustment for this candidate.
204 // adjusteri: proposer of the adjustment.
205 // startsi, votesi, and adjustsi: counters
206 startsi := 0; votedi := NONE; adjusteri := NONE;

207 when vci�1(NOW ) = iT and votedi = NONE do

208 broadcast(hstart, ii);

209 when received S=hstart, ii from q do

210 rti;q := vci�1 (NOW);
211 // start new candidate clock
212 cci;q (NOW) := 0;
213 if not-duplicate(S) then startsi := startsi + 1;

214 when transmission-con�rmed(hstart, ii)do
215 start(VoteTDMTimer, rank(p));

216 when expired(VoteTDMTimer) and startsi � f + 1 and votedi = NONE do

217 votedi := p; votesi := 1; RTi[p] := rti;p; broadcast(h vote, i, p, rti;p i);

218 when received V = h vote, i, v, rti;v i) from q 6= p and not-duplicate(V) do
219 if not-started(VoteTimer) then start(VoteTimer);
220 RTi[q] := rti;v ;
221 if rank(v) > rank(votedi) or votedi = NONE then

233 votedi := v; votesi := 1; broadcast(h vote, i, v, rti;v i);
222 else-if votedi = v and (i = 0 or (i > 0 and rti;v > 0)) then
223 votesi := votesi+1;

224 when expired(VoteTimer) or votesi = N do

225 start(AdjustTDMTimer, rank(p));

226 when expired(AdjustTDMTimer) and adjusteri = NONE do

227 adjusteri := p; adjustsi := 0; N := votesi;
228 �i := median(8xRT i[x] > 0);
229 broadcast(h adjust, i, p, �i i);

230 when received D=hadjust, i, a, �a i from q 6= p and not-duplicate(D) do
231 if not-started(AdjustTimer) then start(AdjustTimer);
232 if rank(a) > rank(adjusteri) or adjusteri = NONE then

233 adjusteri := a; adjustsi := 1; �i := �a;
234 broadcast(h adjust, i, a, �a i);
235 else-if adjusteri = a and (i = 0 or (i > 0 and rti;v > 0))then
236 adjustsi := adjustsi+1;

237 when expired(AdjustTimer) or adjustsi = N do

238 vci := cci;voted
i

+ �i; N:= adjustsi;

Figure 4: The \phase-decoupled" algorithm

11



solved using a simple Time-Division Multiplexing (TDM) approach: each pro-
cesses delays its own vote by a period that is inversely proportional to its rank.
This arti�cially extends the agreement phase but, as seen in Section 4.1, this is
not the major factor on the �nal precision.

A pseudo-code description of the \phase-decoupled" algorithm is given in
Figure 4. As in the basic algorithm, processes transmit a start message when
their virtual clock reaches the time to resynchronize (l. 207). Unlike the basic
algorithm, start messages do not generate acknowledgements. Instead, when
enough start messages have been observed, the voting phase is immediately
started (l. 216).

The voting phase is similar to that of the basic algorithm with some minor
changes. One of the di�erences its that, instead of the �nal adjustment, voting
messages disseminate the reception time of the associated start message (l. 217).
The other di�erence is that each process delays the vote on its own clock by an
amount of time that is dependent of its rank (l. 215). If correct, the process
with higher rank will propose its own clock �rst and the other processes will
con�rm this vote. Only in the case of failure, the process with succeeding rank
will issue a di�erent vote message. As before, timeouts are used to terminate
the voting phase in case of missing votes.

At the end of the voting phase, all correct clocks have agreed on the same
candidate clock (l. 224). However, di�erent processes can have di�erent sets of
votes. Note that if a process fails during the transmission of its own vote the
CAN does not ensures the reliable delivery of this message. Thus, processes
cannot apply a local function to compute the adjustment for the selected clock:
an additional agreement phase needs to be performed. This second phase is
quite similar to the voting phase. The process with higher rank will locally
compute the adjustment and disseminate it using an adjust message (l. 229).
This message needs to be con�rmed by all correct processes (l. 234). Again,
in case of failure of the process with higher rank, all other processes would, in
turn, compute and propose an adjustment for the selected clock.

8 CAN message priorities

The CAN priority based arbitration scheme allows the assignment of a di�erent
priority to each protocol message. This section discusses how this feature can
be exploited to promote faster protocol termination. Our proposal assumes
that the message identi�ers are constructed using three �elds, namely protocol

priority, message priority and rank priority.
The protocol priority �eld is mapped onto the high priority bits of the mes-

sage identi�er and reects the relative priority of clock synchronization with
regard to other activities in the system. A positive feature of our algorithm is
that, as long as enough bandwidth is reserved to execute the protocol in due
time, the use of the higher CAN priorities is not required in order to achieve
good precision.

The message priority �eld reects the relative priorities of protocol messages
with regard to each other. Here, message urgency increases as the algorithm
execution approaches its �nal phase (that is, the adjust messages have higher
priority than the vote messages, which in turn have higher priority than starts).
The rationale is that, as soon an a new protocol phase is started, messages
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regarding previous phases become obsolete and should be given a lower pri-
ority (the time-division multiplexing scheme minimizes the number of these
messages).

Finally, the rank priority �eld ensures that messages of the same type are
given a priority which reects the rank of their senders. This means that the
vote (or adjust) from the process of higher rank (which is bound to win the
election) is given a higher priority than other votes.

The use of the CAN arbitration scheme complements the time-division mul-
tiplexing technique when, due to processing or network transient overloads, re-
quests from di�erent processes compete for network access. In the performance
section, this CAN-based message ordering scheme was used in all simulations.

9 Performance

This section discusses the performance of the \phase-decoupled" a posteriori

algorithm in terms of number of messages exchanged, precision and accuracy
preservation.

9.1 Number of messages

The minimum number of messages generated by an execution of the algorithm
is n starts, n votes and n adjusts, for a total of Nmin = 3n messages4. Worst-
case values depend on the number of faults and on system con�guration. If all
nodes con�gured to generate a start message reach the synchronization point
approximately at the same time, the �rst phase of the algorithm generates n
messages. Nodes should then vote for electing a candidate clock. In the worst-
case, each node begins voting on its own clock, changing afterwards the vote,
successively, to higher rank clocks. This means each node generates a number
of messages equal to its rank numbering; the sum of the messages generated by
all the nodes represents the sum of the �rst n terms of an arithmetic sequence
with ratio one. This model applies also to the adjustment phase. Thus:

Nmax = n+
n

2
(1 + n) +

n

2
(1 + n) = n2 + 2n

Naturally, the average number of messages exchanged on a typical execution
environment is much less than Nmax. The purpose of the time-division multi-
plexing scheme on the voting and adjust phases is to approximate the average
number of messages exchanged to Nmin. To evaluate the e�ectiveness of our
approach, we have used the MIT LCS Advanced Network Architecture group's
network simulator (NETSIM [6]). In this experiment, we have considered the
CAN 2.0B @ 1 Mbps and we have set the time-division multiplexing timers for
a value of 400�s. This value is 2:5 times bigger than the time required to propa-
gate a message (160�s) but is still small enough to have a minor impact on clock
precision in case of process crashes (each timeout adds 400�s to the agreement
phase, thus even two consecutive failures would a�ect the precision in less than
10�3�s). The results for a fault-free scenario are shown in Figure 5, where the

4Actually, through a network management interface, it is possible to load a con�guration
where only 2f + 1 processes are required to send a start message. However, to simplify the
explanation, we have selected a con�guration where all nodes run the same code.
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Figure 6: Average agreement time versus network load

use of the time-division multiplexing method is compared with a scenario that
does not use such technique. It is clear that the number of messages gener-
ated in the former case closely approximates the minimum number of messages
required by the algorithm.

9.2 Precision and accuracy preservation

The precision achieved by an algorithm based on the a posteriori agreement
technique was proven [23] to be limited by:

�vi � (1 + �)��tight + 2��max
agreem

Additionally, at each resynchronization there is a potential accuracy loss of,
approximately, (1 + �)��tight (see [23] for exact formulas).

The parameters needed to compute results are: ��tight, which depends on
maximum network propagation delay variance and on the maximum variance of
timestamping processing overheads that can be observed at any correct receiver;
�, that depends on the speci�cations and operational condition of the clock;
and �max

agreem which depends on the number of tolerated faults, resulting number
of messages exchanged, con�guration of the time-division multiplexing timers
using for voting phases, and on background tra�c of higher priority.
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Intended precision T Worst-case accuracy loss
(�s) (s) ( �s=hour)

50 20 3600 + 1800
100 45 3600 + 800
200 95 3600 + 370
300 145 3600 + 240

Table 1: Resynchronization interval

To evaluate the impact of the high-priority tra�c load on the time required
to reach agreement we have run a series of simulations of our protocol under
di�erent tra�c loads. The results are depicted in Figure 6. It can be seen that
even a tra�c load of high-priority background tra�c in the order of 15% has a
small impact on the agreement time (which in turn has only a minor impact on
clock precision).

Table 1 presents the resynchronization interval required for di�erent values
of worst-case precision. It also shows the maximum accuracy loss per hour of
operation using such a resynchronization interval. We have considered a value
of 10�s for ��tight (a conservative value) and a value of � = 10�6, common
for crystal based clocks. The worst-case accuracy loss has two components, one
that depends exclusively of the drift of physical clocks (without external synchro-
nization, this is also the best accuracy preservation achievable [18]), and other
that represents the protocol-induced accuracy loss. If required, the a posteriori

agreement technique can be extended to perform external synchronization [23].
Nevertheless, it is important to exhibit a small accuracy loss even when external
synchronization is used (this makes the system robust to transient faults of the
external source).
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Figure 7: Bandwidth consumption (T=45s)

As it can be seen, to o�er a precision in the order of 100�s (which is less than
the average time required to disseminate a message in the CAN) clocks need
to be synchronized only once every 45s and the protocol induced accuracy loss
is much smaller than the accuracy loss due to the drift of the physical clocks.
Figure 7 shows the CAN bandwidth consumption due to the protocol tra�c in
this scenario for di�erent number of nodes. Since clock synchronization tra�c
exhibits a bursty behavior, the �gure shows worst-case, minimum and typical
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values of bandwidth consumption during the execution of the protocol. Again,
it should be noted that typical values are much lower than the theoretical worst-
case value. The �gure also shows the average bandwidth consumption over the
entire synchronization period (lower line); naturally these values are very small.

10 Conclusions and future work

Designing clock synchronization protocols for CAN is justi�ed by the increasing
use of this network in industrial automation applications. Our work depar-
tures from a straightforward implementation of the a posteriori algorithm on
CAN, which is obtained by enriching the generic algorithm described in [23]
with a CAN-speci�c agreement protocol. This approach has several limita-
tions, namely the large number of messages exchanged and the low accuracy of
clock synchronization. It is interesting to observe that an optimization for local
area networks (the use of acknowledgements for the dual purpose of reliability
and clock value collection) actually degrades the performance on CAN. A new
\phase-decoupled" a posteriori agreement algorithm that carefully addresses
the limitations of CAN was presented. The algorithm o�ers a tight precision
and good accuracy with a reasonable cost. For instance, to ensure a precision
of 100�s, clocks have to be synchronized only once every 45s and the accuracy
loss is only in the order of 4:2ms per hour.

It was shown that the a posteriori agreement technique can be combined in
an hierarchical manner with other synchronization algorithms to provide clock
synchronization beyond the borders of a single broadcast segment [23]. A similar
approach could be used here to synchronize several CAN buses. The integration
of this technique with the approach suggested in [3], would also allow to support
both internal and external synchronization.
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