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Abstract

In recent years there has been a growing interest in developing communication systems
that are able to deliver messages respecting potential causality. Unfortunately, causal
delivery cannot be provided without costs: extra delays may be induced on message
delivery or processes may be required to maintain and exchange records of causal rela-
tions. In this paper we present an extension to previous work on compression of causal
information using knowledge about the topology of the communication structure.

In order to make practical use of this result, we present a methodology to model
the communication system. The technique exploits the physical structure of existing
networks, in particular its hierarchical nature, to create a communication graph where
causal separators match the underlying physical and administrative organization. We
show that this approach can be applied to existing large-scale systems, providing the
means for using topological timestamping with negligible overhead.
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Chapter 1

Introduction

In a distributed system, a process is able to obtain a view of the system evolution
by exchanging information with other processes. For a given process, the “natural”
ordering of messages is an order that respects the cause-effect relations in the system.
Thus, it is interesting to develop communication infrastructures that deliver messages
in causal order, such that processes can have a correct view of system evolution. Since
it is usually impossible to know, a priori, which events are causally related, the com-
munication subsystem should take the conservative approach of (partially) ordering
all events that are potentially related in a causal way (unrelated events are referred to
as concurrent). When a protocol constrains (by construction) the cause-effect relations
in the system and, in consequence, is able to deliver messages ordered according to
causality, we say that the protocol enforces logical precedence[1]:

Logical precedence: In a distributed system, in which information is ex-
changed only by transmitting messages, a message m is said to precede or
to be potentially causally related to a message n, represented as m! n, only
if: (i) m and n were sent by the same process and n was sent after m or; (ii)
m had been delivered to the emitter of n before n was sent or; (iii) x exists
such that m! x and x! n.

Experience has shown [19, 1, 13, 16] that the design of distributed applications
can be simplified if messages are received in order of logical precedence. Since extra
complexity would be added to such applications, should the communication subsystem
not provide causal delivery, several algorithms have been proposed to implement this
ordering discipline [8, 20, 1, 5, 13, 7]. Nevertheless, despite its advantages, the use of
causal communication has been somehow limited by the overhead incurred by existing
implementations. A major cost of protocols that preserve logical precedence is the size
of “history” information that needs to be stored and exchanged to maintain causality,
specially in large-scale systems where group addressing is used.

In this paper we extend previous results on causal history compression using knowl-
edge on the topology of the communication structure. Our compression technique uses
the concept of a causal separator, a set of nodes of the communication graph that can
be used to filter causal information. An implementation of this optimization is pre-
sented. Additionally, we show the applicability of this approach to real-life large-scale
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networks, given their hierarchical nature: we present a methodology to model the
communication system as a graph, where causal separators that match the underlying
physical and administrative organization are clearly identified.

The paper is organized as follows. Related work is surveyed in Chapter 2. Causal
separators are introduced in Chapter 3. Our representation of causal histories is p-
resented in Chapter 4. Chapter 5 describes how our implementation can be applied
to large-scale systems. The possibility of providing incomplete causal orderings is
discussed in section 6. Chapter 7 presents performance results obtained through sim-
ulation. Concluding remarks appear in Chapter 8.
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Chapter 2

Related work

Early implementations of logical precedence (also described as the “happened before”
relation) were based on logical clocks [8], a technique that introduces a systematic de-
lay in message delivery and that orders more messages than those potentially causally
related [20]. To avoid the disadvantages of logical clocks, a new set of algorithms has
been proposed, where the information required to precisely define causal relations is
piggybacked on the messages exchanged. These approaches are based on causal histo-
ries or vector clocks [1, 13, 7]. While some work in this area assumed that all messages
were addressed to all processes in the system [19, 13], recent systems allow messages
to be addressed exclusively to a subset of the existing processes [1, 7, 12]. These subsets
may be structured in groups that may sometimes overlap. Group addressing may
improve the system performance, preventing processes from spending resources on
messages of no concern to them. On the other hand, group addressing increases the
complexity of the algorithms required to preserve logical precedence.

An early implementation of causal histories was proposed by Birman and Joseph [1]
to implement ISIS’s CBCAST primitive. In this implementation, causal histories includ-
ed the entire messages: every time a message is locally delivered or sent, a copy is added
to the local causal history; additionally, the causal history of the sender is piggybacked
in every message. The advantage of this technique is that the delivery of a message is n-
ever delayed, since a message carries all the preceding messages with it. The algorithm
used in PSYNC [13] is very similar to that of CBCAST. However, since PSYNC is built on
top of a reliable transport layer, only message identifiers are stored in the causal history
(additionally, PSYNC optimizes the size of the message timestamps). Vector clocks are
a particular representation of causal histories, where message identifiers are stored in
a vector, and where each entry is allocated to a specific process. Nevertheless, the size
of vector clocks still grows linearly with the number of processes [3]. For instance, the
protocol in [23] uses a vector clock per each group of processes; however they have
shown that if the graph of groups contains cycles, a process has to keep (and exchange)
the vectors from all groups. Thus, it is important to use techniques to reduce the size
of vector clocks. Unfortunately, there is a trade-off between the amount of information
that needs to be maintained to preserve causality and the degree of concurrency that
is achieved [23, 12]. In the next chapter we introduce a technique that uses topological
information, exploiting points were messages are already (physically) serialized, to
reduce the timestamp size with negligible impact on the system parallelism.
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Chapter 3

Causal separators

It has been shown that when communications graphs have a process that acts as a
gateway, it is possible to decrease the amount of information required to determine
temporal relationships [10]. Optimizations based on the communication patterns of
processes have also been presented in [23]. Our paper extends these results to arbitrary
communication structures, making the following contributions:

� we show that, even in graphs that contain cycles, it is possible to reduce the size
of the information exchanged by defining causal separators, a set of nodes of the
communication graph that can be used to filter causal information.

� we present a methodology to model the communication system such that one can
make practical use of the previous result.

These two aspects will be dealt with considerable detail in the next two chapters.
In the present chapter, we provide a global overview of our approach.

Node Link

Vertex Separator

Figure 3.1: Vertex Separators.

We assume that each process is able to communicate directly only with a given
subset of system processesLp � P . Two processes not directly linked can communicate
inderectly through a chain of packets (usually, automatically created by a routing
algorithm). The complete communication topology can thus be represented by a graph
G(P; E), where processes are the vertices and the communication links between them
the edges: there is an edge incident to fp; qg if p can send messages to q. We assume
that the graph is connected. A set of processes, S, is called a (FS; BS) vertex separator,
where the sets FS andBS are called, respectively, forward and backward sets, iffFS\BS =
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;^FS [BS [S = P and 8f 2 FS;8b 2 BS every path connecting f and bpasses through
at least one vertex of S. In the context of causal communication, we called such vertex
separators causal separators (see Figure. 3.1).

In the next chapter we will show that a causal separator can work as a barrier that
filters all information concerned with messages exclusively addressed to the backward
set and “reported” to all members of the separator (“reported” will be defined precise-
ly). Let a set of processes bounded by one or more causal separators be defined as a
causal zone. An interesting corollary of the previous observation is that the causal infor-
mation concerned with the elements of a causal zone may never need to be propagated
outside the boundaries of that causal zone, if reported to all members of the separator
from which a causal relation with the outside is established.

In chapter 5 we will show that it is possible to model the communication system in
such a way that causal separators can be effectively used. The technique exploits the
physical structure of existing networks, in particular its hierarchical nature, to create
a communication graph where causal separators match the underlying physical and
administrative organization.
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Chapter 4

Extended causal histories

In this chapter we present an implementation of causal histories that allows to reduce
the causal information exchanged using information about causal separators.

4.1 Definitions

In the following text we will assume that the system is composed of a collection of
processes, P = fp1; p2; : : : ; png with disjoint memory spaces. We assume that a unique
identifier is associated with each process p 2 P (for convenience, we will use the
same notation to refer to the process and its identification). We also assume that an
order relation, �, can be defined between process identifiers. Processes are able to
communicate by exchanging messages: the identification of the sender, sm 2 P , and
the set of destination processes, Am � P , are always associated with each message,
m. We do not impose any restriction on the destination addresses: a message can
always be sent to any set of processes in P . Additionally, we assume that each sender
assigns a locally generated integer value, cm, to each message, such that if m is sent
before n then cm < cn (this can be trivially obtained by using a local counter1 cp at each
process p). Although the pair (sm; cm) uniquely identifies a message, for convenience
we define the message’s unique identifier also including the destination address, that is,
uidm � (sm; cm;Am).

As in most works in causal multicast protocols, in addition to the send event,
we introduce two distinct events: receive and deliver. The receive event identifies the
message arrival at a given process and is not visible at the application level. The deliver
event identifies the message arrival at the application level. In order to enforce causal
delivery, the protocol may have to delay the delivery of received messages. Since we
are exclusively concerned with techniques to enforce causal delivery, we assume that
the underlying message passing subsystem is reliable, in the sense that messages sent
are always received by all correct addressed participants. This assumption is consistent
with recent implementations of causal multicast protocols, which are based on a reliable
transport layer (for instance, MUTS [16]). We do not make any assumptions about the

1Since this counter is stored in a bit array with limited capacity, we cannot have indefinitely growing
counters. However, techniques exist to overcome this problem [9].
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order in which messages are received. Due to the reliable multicast assumption, our
causal histories do not need to include the messages themselves, but only their unique
identifier, uidm. However, for the sake of clarity, when referring to the contents of
causal histories we will just use the word “message” instead of the more precise but
longer expression “message’s unique identifier”.

4.2 Using carbon-copies

We now introduce our representation of causal histories. The interested reader will
notice that there are no deep fundamental differences between our representation of
causal histories and alternative approaches described in the literature [1, 13]. However,
it provides the ground for the implementation of optimizations based on causal sepa-
rators, the main contribution of our work. Our representation of the causal history, that
we called extended causal history, stores causal information in three different entities:

� a causal history, Hp, a list with the messages that precede the next message to be
sent by p;

� the delivery history, Dp, a list with the messages that have already been delivered
at p and;

� a carbon-copy history, Cp, that keeps track of to where causal information has been
“reported” (the carbon-copy history is used for compression of causal informa-
tion, and its use will be detailed later).

The delivery history maintains a record of all messages that were delivered to a
given process. The causal history maintains a record of all messages that precede
the next message to be sent by a given process. Although the causal history contains
the delivery history, different compression rules will be later applied to each, thus
we decided to explicitly maintain this information in two different entities (explicit
separation between causal and delivery histories is also used in other approaches, for
instance [15]). These histories are used in the following way:

Every time a message m is sent by process p, it is timestamped with its sender’s
causal history, Hp. All messages in Hp are then said to be “reported” to all recipients
of m. This information is kept in carbon-copy history, Cp. When a message is received
by process q, the recipient compares the message timestamp with its own delivery
history and checks whether or not all preceding messages have been already delivered
locally: it then delivers or delays the received message accordingly. When a message
is delivered, the recipient delivery and causal histories are updated accordingly.

More precisely, causal delivery can be enforced using the delivery and causal histo-
ries if the following rules are applied (for clarity, we will defer the use of the carbon-copy
history until rule 6 is introduced):

R1 (Initial state): When p starts execution, Hp, Dp, and Cp are empty. Also,
cp = 0.
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R2 (Timestamping): Before being sent by process p, a new uid is assigned
to message m by incrementing the local counter cp. Next, m is timestamped
with p’s causal history, that is, Hm = Hp.

R3 (Causal delivery): On receipt of message m sent by process p and times-
tamped with a causal history Hm, process q 2 Am delays the delivery of m
until all messages inHm that were addressed to q have been delivered at q 2.
More precisely, q delays the delivery of m until the following condition is
true: 8(i 2 Hm : q 2 Ai) i is-in Dq; where the is-in relation is here defined
as: m is-in D () m 2 D.

R4 (Record maintenance): When process p sends m it atomically adds m to
Hp and to Dq . When a message, m, is delivered at q 6= sm, m’s timestamp,
Hm, is added to Hq. Additionally, m is added to Hq and Dq.

Theorem 1: Rules 1-4 enforce message causal delivery (see appendix for
proofs).

Rules 1-4 above are enough to enforce causal delivery of messages (see [18] for
a proof). However, this solution suffers from a serious drawback as, unless some
measures are taken to garbage-collect redundant elements, the causal histories continue
to grow indefinitely. In the next paragraphs we present an extra set of rules that allow
the garbage-collection of the extended causal history.

We start by compressing the delivery history. The compression rule exploits the
fact that messages from the same sender must always be delivered in the order they
were sent. From the causal delivery rule, if a message m from process p is delivered to
q, then all previous messages from p, addressed to q, were already delivered at q. As a
result of this rule, delivery histories do not need to keep more than one message from
each sender. More precisely,
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Figure 4.1: An example.

R5 (FIFO Delivery): At most one unique message identifier needs to be
stored from each sender in the delivery history. When a message m from
process p is added to Dq , m replaces the previous message from p delivered
at q.

2A message can always be delivered without delays to its sender.
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Naturally, since some elements are deleted from the delivery history as new
members are added, the definition of “is in D” must be slightly changed.
We now say that a messagem is-inD if and only if there exists a message in
D, from the same sender, with a higher or equal identifier. More precisely,
m is-in D () 9n2D : cm � cn.

Theorem 2: Rules 1-5 still enforce message causal delivery (see appendix
for proofs).

We now garbage-collect the causal history. The idea is to remove from this history
all the elements not strictly required to preserve causal delivery. In doing so, we
discard information about the past. The method is an extension of the “last send”
and “last update” vectors proposed by Singhal and Kshemkalyani [21], that were also
suggested in [23] to optimize the use of vector clocks on overlapping groups. We
simply extend this method to arbitrary addressing schemes. The optimization can be
informally presented as follows: before being sent, message m is timestamped with its
sender’s causal history Hp. It will then be delivered to Am, after all messages in Hm.
Any message n : An � Am that carries m in its timestamp, does not need to carry Hm

since it will be delivered after m, thus after all messages in Hm. However, this requires
some bookkeeping of whom the messages were reported to. This information can be
kept in an additional history, called the carbon-copy history, C. The carbon-copy history
contains a field for each message in the causal history, storing the list of processes to
which the associated message was already “reported” within the timestamp of another
message. The carbon-copy history should be updated using the following rule:

R6 (Carbon-copy): Each process, p, keeps a carbon-copy history, Cp, that
contains an element Cp(m) for each message m in Hp. These elements are
used according to the following rules:

R6.1 - Extended timestamping (optional): When a message m is times-
tamped, in addition to Hp, it may also by timestamped with Cp. We refer to
the carbon-copy field of m’s timestamp as Cm.

R6.2 - Send update: After sending a message m, and before inserting m in
Hp, update all fields of Cp as follows: 8(i 2 Hp) let Cp(i) = Cp(i)[Am [fsmg.
Then insert m in Hp and initialize Cp(m) = ;. These updates should be
performed in a single atomic operation.

R6.3 - Deliver update: After delivering a message m, processor q 6= sm
updates the carbon-copy fields of previous messages from the same sender
as follows:

8(n 2 Hq : sn = sm ^ cn < cm) let Cq(n) = Cq(n) [ Am

Then, it adds all elements n of Hm to Hq. The carbon-copy fields of these
messages are initialized as follows (if R6.1 is not used, use Cm(n) = ;):
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Cq(n) = Cm(n) [ Am [ fsmg [
[

i2Hq:si=sn^ci>cn

Ai

If n 2 Hm is already in Hq it just updates the existing carbon-copy field,
merging Cq(n) with the result of the previous expression. Finally, q inserts
m in Hq and initialize Cq(m) = fsm; qg. These updates should be performed
in a single atomic operation.

As noted above, messages may also be timestamped with their sender’s carbon-
copy history, improving the accuracy of the contents of all carbon-copy histories. This
is achieved at the cost of increasing message sizes. Thus, there is a tradeoff between the
efficiency of the garbage collection and the size of the message’s timestamps. When in-
creasing the size of the timestamps is undesirable, the carbon-copy history can be main-
tained using exclusively information concerning messages locally sent and received.
The carbon-copy history is used to compress the causal histories in the following way:
(1) messages do not have to be included in a timestamp, if they have already been
included in a timestamp of another message sent to the same destination; and (2) when
the carbon-copy field of a message completely includes the message’s address, that
message can be safely removed from the causal history as it has already been reported
to all relevant processes. More precisely,

R7 (Timestamp Redundancy): When timestamping a message m, processor
p only includes in Hm the elements of its causal history i 2 Hp not reported
to Am, according to p’s knowledge, i.e.: Hm =

S
i 2 Hp : Am 6� Cp(i).

R8 (History Redundancy): In a causal history, Hp, if there exists a message,
m, such that Am � Cp(m), m can be removed from Hp and Cp.

Theorem 3: Rules 1-8 enforce message causal delivery (see appendix for
proofs).

In Figure 4.1 we give a small example that illustrates the use of garbage collection
rules. We consider three processes, P1; P2; P3. The figure shows the contents of their
causal, carbon-copy, and delivery histories. The list of messages waiting to be delivered
at process Pi is denoted Wi. P1 sends a message a to Aa = fP2; P3g which is received
and delivered at P3 but not received at P2 due to a network delay. Note that due to rule
R6.3, C3(a) = fP1; P3g. Next, P3 sends a message b to P2 which is also delayed by the
network. Note that due to R6.2, C3(a) = fP1; P3g [ fP2g = fP1; P2; P3g. Since, Aa � C3,
according to R8, message a is removed fromH3 and C3. Next, P3 sends another message
c to P2. Message c will be queued at P2 until b 2 Hc is delivered (which in turn, must
wait for a).
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4.3 Topological timestamping

Causal separators can be exploited to reduce the size of message timestamps as follows.
When a member of the causal separator timestamps a message addressed to processes
exclusively located in the forward set, it can omit in the timestamp all elements of its
causal history that were addressed exclusively to members of the backward set and that
were already reported to the other members of the causal separator. More precisely,

R9 (Topological timestamp): Processor p is sending a message m. All mes-
sages n 2 Hp for which exists a (FS; BS) causal separator3, S, such that:
p 2 S ^ Am � FS ^ An � BS ^ S � Cp(n), do not need to be inserted in Hm

Theorem 4: Rules 1-9 enforce message causal delivery (see appendix for
proofs).

The compression achieved with the topological timestamping rule can be further
improved at the cost of reporting causal information to all the members of the causal
separator. In fact, remember that the carbon-copy fields can always be forced to a given
desired value just by sending a message to the relevant processes.

There are a number of difficulties associated with the use of our topological times-
tamping scheme. In first place, an arbitrary network can have a large number of causal
separators: topological timestamping can be applied to all separators or just to a subset
of them.

In second place, causal separators need to be computed before the topological
timestamping rule can be applied. There are a number of algorithms to identify vertex
separators in a graph (for instance, see [4]). However, these can be too expensive to be
executed frequently during normal system operation. Thus, our method is better suited
for applications where the topology is relatively static or can be computed at compile
or configuration time. In this case causal separators may be computed in advance, and
the correspondent S;FS and BS sets be prepared and loaded on all causal separator
members to allow a fast execution of the topological timestamping rule. A particular
case of a relatively static topology, is the one defined by the network infrastructure that
connects individual nodes of a distributed system. This is a sufficiently important case
– in fact, this special case gave us the motivation for this work – thus, it will be dealt
with in its own section, later in the paper. The other difficulty associated with the use
of causal separators is that any change to the topology can alter the membership of the
causal separators. Thus, special care must be taken when processes join the system.
This issue will be the concern of the next paragraphs.

4.4 Handling of joins

We considered that the failure of a process is permanent and that if the process later re-
covers it is considered a new process. Thus, there is only one scenario where the failure

3Where FS and BS are respectively the forward and backward sets of the separator(see chapter 3)
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of a process may endanger the delivery of messages according to causal precedence.
This happens when the failed process is the unique member of a causal separator and
its failure disconnects the associated backward and forward set. In this case, when both
sets are reconnected, through the creation of a new causal separator, it must be ensured
that none of the precedence information that was stored at the old causal separator is
lost. Thus, we distinguish four different scenarios for a joining process:

� (i) The joining process does not modify existing causal separators in the graph.

� (ii) The joining process creates a new causal separator connecting two sub-graphs
never connected in the past.

� (iii) The joining process expands an already existing causal separator, but does
not creates new separators.

� (iv) The joining process creates a new causal separator connecting two sub graphs
that have been connected in the past by another causal separator.

We will analyse the last two cases. The first and second cases are trivial as causal
separators are not created or modified (thus, the new process is not required to perform
any special action). In the third case, the process is required to obtain the causal history
of the other separator members before starting to receive and send causal messages.
For sake of simplicity, we assume that in each separator, the membership changes are
performed in a serial way, according to some distributed membership algorithm (for
a survey, see [11]). Our approach requires the membership protocol to be slightly
expanded in order to provide to each joining member the causal history of all the
current members of the separator. Finally, in the fourth case, when two sub-graphs
are reconnected after a complete failure of a previous separator, three solutions are
possible:

� Require the new process to perform a global checkpoint to obtain the causal
histories of all members of the backward set. This method may be too expensive
to be applied in practice.

� Provide each process in the separator with a Uninterruptible Power Supply unit
(as used in [7]) or with non-volatile RAM. This would allow the causal history of
the separator to be preserved in stable memory. In this case, the two causal zones
could only be reconnected by a process able to read the stable memory of the last
member to fail (using for instance the method introduced by Skeen [22]) in order
to obtain the causal history of the previous separator.

� Prevent this case from happening, by ensuring that causal separators contain at
least f + 1 members, in order to tolerate f faults. This could be done by adding
members to the causal separator, whose purpose would be exclusively to store
the separator’s causal history. Those extra members would act as witnesses of
the traffic flowing through the separator. In this case, the backward and forward
sets could be reconnected by any process able to load the causal history from a
witness process.
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4.5 Further improvements

There are a number of techniques that allow further compression of timestamps. Most
of these techniques can also be applied to our extended causal histories. For instance,
causal histories can be additionally compressed using information about the delivery
of messages: if a message is known to be already delivered to all participants (fully
delivered), its identifier can be deleted from the causal history. In synchronous sys-
tems, the passage of time can provide assurance of message delivery. For instance, in
the xAMp [17], there is a well-known worst case dissemination time, �. Since every
message is fully delivered within � time, this interval is also used to remove message
identifiers from causal histories. Another way to obtain information about message
delivery is to analyse incoming timestamps: a message M is fully delivered if its iden-
tifier is received in a timestamp coming from all of M ’s recipients [7]. It is interesting
to notice that these tests are dual, respectively, to the � and Fifo stability tests for syn-
chronised and logical clocks [19] (although in the context of causal histories they are
not used to reduce message latency but only to save storage).

In this chapter we have shown that an extra carbon-copy history can be used to
garbage-collect timestamps. This was attained at the cost of higher storage costs, since
auxiliary information needs to be maintained at every process (in our case, the carbon-
copy information). Related approaches, suffer from the same drawback [21, 23].
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Chapter 5

Using the communication topology

Until now, we have used the term processes to identify our computational entity in a
quite generic way. A possible implementation could apply the algorithm to the commu-
nication between real (operating system) processes. In such cases, the communication
graph would reflect the application-level structure.

Node

Node comm. server

Department  router

Organization router

Process

Causal Separator
Department_1

p1

p2 p3
Node 1

Node 2
n1

n2

d1

Department_2

p4
p5

p6

Node 3

n3

d3

d2

Figure 5.1: Communication architecture.

Consider however how a large-scale network is set up. The view of a fully-
connected graph among all processes in the system is an abstraction that matches
the service but not the structure of the underlying network. With regard to this, the
global network structure1 has very important features: (i) it is not homogeneous, fea-
turing, besides the mesh of long-haul point-to-point links, technologically interesting
“modules” such as LANs, MANs and, still to come, ATM fabrics; (ii) most of the sites
are located inside private, organization-specific domains, which are often separated
from the rest of the network by private front-end routers or gateways; (iii) in large
organizations, this separation may be enforced again at department level; (iii) in many
systems, there exists in each node a special communications process, driver or dedicat-
ed communication board responsible for all interactions of that node with the network.
When this is the case, all messages from processes on the same node are naturally

1Called Internet in the case of the TCP/IP based internetwork.
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serialized when they are physically transmitted. Such a scenario is depicted in Fig-
ure 5.1. This structure will last long enough to deserve some systematization, which
will hopefully yield more efficient inter-process communication in the large [25].

As an example, we propose the following structuring principles: the global net-
work is a WAN-of-LANs; the WAN is generally uncontrollable from the viewpoint of
algorithms – only standard protocols may be run by the WAN routers (e.g. IP); an
exception is made for the part of it behind the border of an organization – department
routers can run specific protocols; organization routers can also run specific protocols,
running over the standard protocols of the global WAN (e.g. Multicast IP). Based on
this realistic structure, we propose a solution for the provision of causal communication
in large-scale systems based on the following methodology:

� the communication entity that connects a node to the network assumes the role of
a router process in the communication structure. This process is a causal separator
that connects the machine to the network.

� routing of messages between nodes is also implemented by special processes, usu-
ally placed in dedicated router nodes, able to execute topological timestamping
as they forward the messages.

Using this methodology, one can build an extended communication graph that takes
into consideration the organization of the underlying infrastructure. In this graph,
new nodes are added, corresponding to communication server and router processes
(see an example in Figure 5.2). Promoting the communication entities to nodes of the
(extended) communication graph has several advantages:

p1

p2

p3

p4

p5

p6

Logical (application-level) communication graph.

p1

p2
p3 p4

p5

p6
n1

n2
n3

d1

d3

Extended communication graph.

d2

Figure 5.2: Mapping the communication structure onto the communication graph.

� It provides a useful way of mapping the abstract communication graph on to
the existing physical and administrative communication structure. This gives the
means for the practical and useful identification of causal separators (for instance,
node’s communication server, department and organization routers, etc.).

� The physical communication structure (i.e., the servers and routers, not the appli-
cation processes) is usually relatively static. This feature provides the basis for an
efficient exploitation of topological timestamping and makes the costs associated
with dynamic changes of the structure almost negligible.

� It provides a practical way of exploiting communication locality. Using topologi-
cal timestamping on the structure obtained by adding communication and router
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processes, it is possible to prevent local information from being propagated on
the network. Messages exchanged between processes of the same node are fil-
tered out by the node router, messages exchanged between processes in the same
department by the department router, and so on.

Of course, there are also a number of disadvantages related to this approach.
However, we believe that these are minimal and will become even less important
as the technology advances, as discussed below.

� The communication servers and routers must implement the topological times-
tamping rules. Thus, specialized routers need to be used and this may be a disad-
vantage compared with approaches based on standard communication entities.
However, “custom” routers are within the reach of engineers and organizations
today: communication protocols (TCP/IP, ISO) are accessible on machines with
excellent price/performance ratio. On the other hand, the IP task forces are today
very active in the study of new routing protocols, group management and high
quality-of-service protocols. Some of that work is based on structuring princi-
ples akin to those just mentioned above, so we believe that proprietary “closed”
routers will evolve in this direction as well.

� By adding processes to the communication structure, the degree of concurrency
of the system is reduced. It should be noted that this theoretical limitation of
parallelism has little practical impact, since new processes are being added in
places where messages are physically serialized. Considering that the error rate
of modern communication links is becoming smaller, the probability of a message
being forced to “wait” for another non-causally related message will be almost
negligible.

� Routers may become a bottleneck in the system, and topological timestamping
increases the overhead of computation that needs to be performed to route each
message. However, the processing power has being growing incredibly fast
(and becoming cheaper) in the last years. Thus, the cost/benefit ratio of having
powerful machines dedicated to routing of messages will decrease in the future.

In conclusion, we believe that the physical and administrative organization of the
physical communication structure can be exploited to support the efficient implemen-
tation of topological timestamping. In order to achieve this goal, some communication
elements must be promoted to nodes of the communication graph. Although this
method reduces the parallelism of the abstract communication structure it has lit-
tle practical impact, as it matches the properties of existing networks 2. Thus, this
technique can be a viable alternative to support causal communication in large-scale
systems.

2Naturally, it should always be possible to bypass the causality mechanisms for applications not
wanting to pay the overhead.
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Chapter 6

Incomplete orders

Ordering all messages that are potentially causally related usually involves ordering
more messages that those that actually need to be ordered. In a real system, only a
subset of potential relations of causality are transformed, by the system evolution, in
effective relations of cause and effect. In many systems, relations between processes
have restrictions that result from the way the system was designed and that can be
known a priori. In order to provide a higher degree of concurrency and parallelism to the
communication system, some protocols use knowledge about the way the applications
are built to avoid imposing ordering constraints on all messages in the system. This
way, messages are split in subsets, which are ordered independently, in what is called
an incomplete order [24]. Another reason to support incomplete orders is that they allow
the implementation of different levels of priorities in communications. Messages of the
same priority could be delivered in causal order, but a message of high priority would
not need to be delayed by a low-priority message.

It is interesting to notice that in earlier systems where incomplete orders were pro-
vided, communication was confined within groups [1, 17] or conversations [13], that were
used as a basis to avoid global total order, global causal order and broadcast addressing.
Recent systems [2, 14] tend to use different techniques to provide incomplete causal
and total orders.

The simplest way of providing incomplete causal orders is to use closed groups,
i.e., to enforce order only on messages exchanged between a subset of processes. This is
equivalent to running several instances of any of the previously mentioned protocols,
one for each group. However, the impossibility of establishing causal delivery between
messages sent in different groups reduces the interest of this approach. The most user-
friendly technique consists of assigning labels to each message and then enforcing
the ordering discipline only on messages with the same label. However this is not
always effective. When vector clocks or causal histories are used in practice, this
method requires a context to be stored for each label in use, which may consume more
resources than desirable. Additionally, it may be very difficult to determine, a priori,
which label should be used. Another approach is to delegate to the upper layer the
task of manipulating causal histories, as suggested in [7]. This seems to be the most
versatile approach. This approach can be applied to any kind of causal histories, as
long as they can be manipulated as an abstract data type exporting a single “merge”
operation. Additionally, it does not suffer from the problem of spending more system
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resources, since a single history needs to be maintained at each process. Due to this
reason, we believe this is the best way to provide incomplete orders in a system using
our extended causal histories.
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Chapter 7

Performance

In order to evaluate the performance of our approach we resorted to simulation. For
that purpose we used the MIT LCS Advanced Network Architecture group’s network
simulator, NETSIM [6]. We measured the average size of timestamps obtained using
our extended causal histories, with and without applying R9 (topological timestamp).
We then compared these values with the size required by a non-optimized clock-matrix
approach [15].
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Figure 7.1: Topology used in the simulations.

The results presented here were obtained using the same network as in Figure 5.2.
At application level, four communication groups are defined, as illustrated in Figure 7.1.
Processes can send and receive messages addressed to the groups they belong (for
instance, process p1 can send messages to groups GA e GC ). A message sent in the
logical graph is mapped into a chain of messages in the extended communication
graph (for example, message m sent at the logical level from p1 to GC = fp1; p6g is
mapped on a chain of messages, m1, m2,m3, m4, m5, with the following addresses,
Am1

= fn1g, Am2
= fd1; d2g, Am3

= fd3g, Am4
= fn3g, Am5

= fp6g). Extended causal
histories are maintained for the messages exchanged in the extended communication
graph.

In this example, with 6 processes, a non optimized matrix clock would require
6x6 = 36 elements in the history. If a vector clock was kept for each group, the size of
timestamps would be of 3 + 3 + 2 + 2 = 10 elements. We simulated our method and
measured the average size of message timestamps. The results presented in table 7.1
were obtained using the following parameters: message rate of 10msg=s at each process
and average network delay of 50ms. As it can be seen, even without the topological
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Scenario n = 6 n = 10

Matrix clock 36 100
Vector clocks 10 14

Extended causal histories
No R9 3.55 3.46

R9 at S2 2.70 3.09
R9 at S1, S2, and S3 2.10 2.76

Table 7.1: Average timestamp size.

timestamping rule, the average size of message timestamps is much smaller than the
obtained with non-optimized versions of the matrix/vector clock approaches. In this
scenario, applying the topological timestamping rule at causal separator S2 = fd3g
improves the results by approximately 20%. Applying the rule also at separators
S1 = fd1; d2g and S3 = fn3g reduces the average to 2:1 elements per timestamp.
Figure 7.2 presents an histogram of the causal history sizes at selected nodes of the
network (more precisely, nodes p3, d2, and d3) for the three scenarios. A histogram for
message timestamp sizes for the three scenarios is given in Figure 7.3.

The table also shows values obtained with a network where two more members
were added to group GA (at node n1) and another two to group GD (at node n3),
resulting in a network of 10 nodes overall. A histogram for message timestamp sizes
for the three scenarios with this new topology is given in Figure 7.4. As it can be seen,
the average size of message timestamps increases comparatively less than with other
approaches. We have experimented the same topology with different network delays
without obtaining significantly different values (less than 5% difference).

The advantages of causal separators are more evident if, instead of measuring
average values on the global system, we measure the impact of the technique on local
communication. Consider for instance the network of figure 7.5, where a small group of
nodes interacts with a larger group through a single gateway. Without using topological
timestamping, the causal information from G2 is propagated to to group G1, inducing
an average timestamp size of 32 elements. If the gateway is used as a separator, the
average timestamp size of group G1 is reduced down to less than 5 elements which
corresponds approximately to the influence of the local group elements plus that of
groups G3 and G4.

The interesting feature of causal separators is the the same type of gains can be
achieved if more than one gateway exists. Consider now the network of figure 7.6,
consisting of three interconnected broadcast networks. If the communication infras-
tructure is constructed in such a way that, in each broadcast network, both gateways
receive all out-going traffic (since these are connected to a broadcast network this can
be achieved with negligible cost), the gateways can filter causal associated with local
communication.

The impact of applying topological timestamping is this case is illustrated in fig-
ure 7.7. The figure shows the distribution of message timestamp size in group G1
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with and without separators. The figure shows also the distribution of the host history
size on process p1 with and without separators. It can be seen that, without topolog-
ical timestamp, the causal history of process p1 is much larger, due to the un-filtered
information regarding remote groups that needs to be stored locally.
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Chapter 8

Conclusions

In this paper, we have studied the problem of ensuring causal delivery in large-scale
systems. We started with a generic representation of causal histories that does not
impose restrictions on message addressing. Then, we showed that this representation
could be used to improve previous results on compression of causal histories using
knowledge about the topology of the communication structure. The technique is
based on identifying causal separators, i.e. vertex separators of the communication
graph, and filtering the causal information that crosses their elements. In order to
make practical use of this result, we have presented a technique that exploits the
physical structure of existing networks, in particular its hierarchical nature, to create
a communication graph where causal separators match the underlying physical and
administrative organization. We have shown that this approach can be applied to
existing large-scale systems, providing the means for using topological timestamping
with little practical overhead.
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Appendix A

Proofs of theorems

A.1 Overview

This appendix provides the proof for some of theorems presented in the report. It is intended
to be relatively self-contained. Although it is assumed that the report has been previously read,
for the convenience of the reader we repeat here the relevant definitions and rules required to
follow the proofs.

For sake of conciseness, we do not present the proofs of all theorems. However, we do
present the proof for what we believe to be the most innovative contribution of our work,
the use of causal separators to compress causal information. In this proof, we deliberately
remove all rules that compress causal histories except the topological timestamping rule. This
substantially reduces the size of the proof and highlights the main contribution of our work.
We intend to present the complete proofs in an future version of the report.

A.2 Assumptions

For self containment, we repeat here assumptions made about our system. We assume that
the system is composed of a collection of processes, P = fp1; p2; : : : ; png with disjoint memory
spaces. We assume that a unique identifier is associated with each process p 2 P (for conve-
nience, we will use the same notation to refer to the process and its identification). We also
assume that an order relation, �, can be defined between process identifiers. Processes are able
to communicate by exchanging messages: the identification of the sender, sm 2 P , and the
set of destination processes, Am � P are always associated with each message, m. We do not
impose any restriction on the destination addresses: a message can always be sent to any set
of process in P . Additionally, we assume that each sender assigns a locally generated integer
value, cm, to each message, such that if m1 is sent before m2 then cm1

is less than cm2
.

Three local events are relevant to us:

� Send event, denoted by SEND(m). Send is a local event that occurs at a single process,
the sender of m. We could explicitly indicate the sender node, SENDp(m) where p = sm
for instance. However, since this information is redundant we simply omit the index.

� Receive event, denoted by RECq(m); q 2 Am, that represents the reception of a message
m at a node q. To avoid violation of causal order, the delivery of the message to the
application can be delayed.

29



� Deliver event, denoted DELIVq(m); q 2 Am, that represents the delivery of message m to
the application at node q.

We do not assume the existence of a global time frame. Thus, we don’t assume the pre-
existence of any mechanism able to order events that occur at different processes. However, we
assume that there is a total order on the events that occur in the same process.

Definition 1 Let A and B be two local events at some process p. We define an order relation, denoted
<, between two local events as follows: A < B iff A occurs before B at p.

We further assume the existence of a reliable multicast primitive with the following prop-
erty:

Assumption 1 If SEND(m) occurs, then, at all processes q 2 Am, eventually either RECq(m) or q
fails.

Using the local order relation, we define logical precedence as follows:

Definition 2 Let SEND(m) denote the sending of message m at sm. Let DELIVp(m) denote the
delivery of m at some process p. We define direct logical precedence, denoted ,!, as:

m ,! m0 def= SEND(m) < SEND(m0) _DELIVp(m) < SEND(m0)

We further define logical precedence, denoted !, as the transitive closure of ,!.

Definition 3 We say that a set of rules ensure causal delivery, if the following condition is verified:

8m;m0 : m! m0 ) DELIVp(m) < 8p : p 2 Am \ Am0 DELIVp(m
0)

Our representation of the causal history, that we called extended causal history, stores causal
information in three different entities:

� a causal history,Hp, a list with the messages that precede the next message to be sent by p;

� the delivery history,Dp, a list with the messages that have already been delivered at p and;

� a carbon-copy history, Cp, that keeps track of to where causal information has been “re-
ported” (the carbon-copy history is used for compression of causal information, and its
use will be detailed later).

The delivery history maintains a record of all messages that were delivered to a given
process. The causal history maintains a record of all messages that precede the next message to
be sent by a given process. Although the causal history contains the delivery history, different
compression rules will be later applied to each, thus we decided to explicitly maintain this
information in two different entities (explicit separation between causal and delivery histories
is also used in other approaches, for instance [15]). These histories are used in the following
way:

Every time a message m is sent by process p, it is timestamped with its sender’s causal
history, Hp. All messages in Hp are then said to be “reported” to all recipients of m. This
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information is kept in carbon-copy history, Cp. When a message is received by process q, the
recipient compares the message timestamp with its own delivery history and checks whether
or not all preceding messages have been already delivered locally: it then delivers or delays the
received message accordingly. When a message is delivered, the recipient delivery and causal
histories are updated accordingly. The relevant rules to update these histories are presented in
the sections were they are used.

A.3 Proof of theorem 1

For self containment, we repeat here the rules that are used for Theorem 1.

R1 (Initial state): When p starts execution, Hp, Dp, and Cp are empty. Also, the local counter cp
is set to zero, i.e. cp = 0.

R2 (Timestamping): Before being sent by process p, a new uid is assigned to message m by
incrementing the local counter cp. Next, m is timestamped with p’s causal history, that is,
Hm = Hp.

R3 (Causal delivery): On receipt of message m sent by process p and timestamped with a
causal history Hm, process q 2 Am delays the delivery of m until all messages in Hm that were
addressed to q have been delivered at q 1. More precisely, q delays the delivery of m until the
following condition is true:

8I2Hm:q2AI
: I is-in Dq

where the is-in relation is here defined as:

m is-in D () m 2 D

R4 (Record maintenance): When process p sends m it atomically adds m to Hp.

When a message, m, is delivered at q, m’s timestamp, Hm, is added to Hq . Additionally, m
is added to Hq and Dq.

Lemma 1 When rules R1 to R4 are used, m is-in Dp only if m has been delivered at p.

Proof: The proof follows directly from the rules that update the delivery history. There is only
one rule that allows a message to be added to the delivery history, this is rule R4. As stated in
the rule, the message is added to the delivery history only after being delivered. 2

Lemma 2 When rules R1 to R4 are used, m 2 Hm0 only if m! m0.

Proof: We consider first that sm = sm0 and then sm 6= sm0 .

sm = sm0 : m and m0 were sent by the same process p. According to rule R2, m must be
already in Hp when m0 is sent, in order for m 2 Hm0 . By rule R4, messages are never added
to causal histories before being sent. Thus, m is not inserted in any causal history before being
sent by p. Then, it follows directly that m must have been sent by p before m0, or m! m0.

sm 6= sm0 : m and m0 were sent by different processes. The proof will consist in building
a causal chain m ! : : : ! m2 ! m1 ! m0. Let m1 be the first message sent by sm0 such

1A message can always be delivered without delays to its sender.
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that m 2 Hm1 (i.e., either m1 = m0 or m1 was sent before than m0 by the sender of m0).
Before sending m1, sm0 must have delivered m2 such that m 2 Hm2 . By definition, m2 ! m0.
The same reasoning can now be applied to m2 and so on. In each interaction, a new sender
process is introduced, different from all previous. As the number of processes is finite we will
finally end up with smn = sm, which was considered under case 2.1. Thus the causal chain
m! mn ! m1 ! m0 has been built. 2

Lemma 3 When rules R1 to R4 are used, if m is delivered at p then m is-in Dp.

Proof: According to rule R4, when m is delivered at p it is added to Dp thus, m 2 Dp, or m is-in Dp.

Theorem 1 Rules R1-R4 ensure message causal delivery.

Proof: We prove the correctness of the algorithm in two stages. We first prove safety (i.e., that
causal delivery is never violated) and then we prove liveness (i.e., that messages are never
delayed indefinitely).

Safety: Consider the actions of a process p that receives two messages m and m0 such that
m! m0. By rule R3 and Lemma 1,m0 will only be delivered after all messages inHm0 addressed
to p have been delivered. Thus, we just have to prove that if m! m0 then m 2 Hm0 .

If m ! m0 there is a possibly empty series of messages m0 : : :mk such that m ,! m0 ,!
: : : ,! mk ,! m0. We will now prove m 2 Hm0 by induction.

� Base case: If m ,! m0, m 2 Hm0 .

– sm = sm0 : 9q : SEND(m) < SEND(m0). By rule R4 process q atomically adds m to
Hq after sending it.

– sm 6= sm0 : 9q : DELIVq(m) < SEND(m0). By rule R4, m is atomically added to Hq

after q delivering it.

In both cases, by rule R2, m0 will be timestamped with Hq (now containing m).

� Inductive step:. If mk ,! mk+1 and m 2 Hmk then m 2 Hmk+1 .

– smk = smk+1 : 9q : SEND(mk) < SEND(mk+1). mk was stamped by q. Thus, in order
for m 2 Hmk we must have m 2 Hq .

– smk 6= smk+1 : 9q : DELIVq(m
k) < SEND(mk+1). By rule R4, Hmk is atomically

added to Hq after delivering mk . Since m 2 Hmk , then m 2 Hq.

In both cases, by rule R2, mk+1 will be timestamped with Hq (now containing mk).

Liveness: Suppose there exists a broadcast message m sent by process p that can never be
delivered to process q. From Assumption 1, if q does not fails, eventually RECq(m). Thus,
according to rule R3, in order for the delivery of m to be delayed at q, there must exist one or
more messages m0 2 Hm : q 2 Am0 ^ :(m0 is-inDq). Let ms be the earliest of those messages
according to the precedence relation, !. To be more precise, remember that ! defines a partial
order. Thus, the “earliest” message according to this relation may not be unique. In fact, there
may exist a set of concurrent messages that are the “earliest” according to !. In this case, let
ms be one of those earliest messages. ms has been sent by some process r and received at q. If
delivered, ms is-in Dq, by Lemma 3. In order forms delivery to be delayed at q, there must exist
one or more messages m00 2 Hms : q 2 Am00 ^ :(m00 is-in Dq). However, all messages in Hms

are earlier than ms according to ! as proven by Lemma 2. Thus, ms is not (one of) the earliest
messages not delivered at q which shows the contradiction. 2
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A.4 Proof of theorem 2

For theorem 2, the following additional rule is used:

R5 (FIFO Delivery): At most one unique message identifier needs to be stored from each
sender in the delivery history. When a message m from process p is added to Dq, m replaces
the previous message from p delivered at q.

Naturally, since some elements are deleted from the delivery history as new members are
added, the definition of “is in D” must be slightly changed. We now say that a message m

is-in D if and only if there exists a message in D, from the same sender, with a higher or equal
identifier. More precisely,

m is-in D () 9N2D : cm � cN

Lemma 4 When rules R1 to R5 are used, m is-in Dp only if m has been delivered at p.

Proof: The proof for Rules R1-R4 still applies. 2

Lemma 5 When rules R1 to R5 are used, m 2 Hm0 only if m! m0.

Proof: The proof for Rules R1-R4 still applies. 2

Lemma 6 When rules R1 to R5 are used, if m is delivered at p, m is-in Dp.

Proof: The proof is by induction.

Base case: According to rule R4, when m is delivered at p it is added to Dp thus, m 2 Dp.
According to definition, m is-inDp.

Inductive step: If m is-in Dp before another message m0 is delivered at p, m is-in Dp afterm0

is delivered at p. By definition, if m is-in Dp, then 9m002D : cm � cm00 . m0 replaces m00 in Dp iff
sm0 = sm00 . However, from the safety proof of theorem 1, m00 ! m0, thus cm00 is less than cm0 .
Thus, after the replacement we still have cm less than cm0 , that is, m is-in Dp. 2

Theorem 2 Rules R1-R5 ensure message causal delivery.

Proof: The safety proof of the theorem is not affected in any way by rule R5. The liveness proof
is also very similar: just change reference to Lemma 3 by reference to Lemma 6. 2

A.5 Causal separators: proof

To prove the correctness of the causal separator rules, the following additional rules are used
(note that all rules not strictly required to this proof are omitted):

R6 (Carbon-copy): Each process, p, keeps a carbon-copy history, Cp, that contains an element
Cp(m) for each message m in Hp. These elements are used according to the following rules:

R6.2- Send update: After sending a message m, and before inserting m in Hp, update all fields
of Cp as follows:
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8I2Hp let Cp(I) = Cp(I)[ Am

Then insert m in Hp and initialise Cp(m) = ;. These updates should be performed in a
single atomic operation.

R6.3- Deliver update: After delivering a messagem, when processor q addsHm toHq, it should
update carbon-copy fields as follows:

8N2Hm:N 62Hq : Cq(N) = ;

Then insert m in Hq and initialise Cq(m) = ;. These updates should be performed in a
single atomic operation.

We assume that each process is able to communicate only with a given subset of system
processes Lp � P . The complete communication topology can thus be represented by a graph
G(P ; E), where processes are the vertices and the communication links between them the edges:
there is an edge incident to fp1; p2g if p1 can send messages to p2. We assume that the graph is
connected. A set of processes, S, is called a (FS ; BS) vertex separator, where the sets FS and
BS are called, respectively, forward and backward sets, iff FS \ BS = ; ^ FS [BS [ S = P and
8pf 2 FS ; 8pb 2 BS every path connecting pf and pb passes through at least one vertex of S. In
the context of our extended histories, we called such vertex separators causal separators.

Causal separators can be exploited to reduce the size of message timestamps as follows.
When a member of the causal separator timestamps a message addressed to processes exclu-
sively located in the forward set, it can omit in the timestamp all elements of its causal history
that were addressed exclusively to members of the backward set and that were already reported
to the other members of the causal separator. More precisely,

R9 (Topological timestamp): Processor p is sending a message m. All messages N 2 Hp for
which exists a (FS ; BS) causal separator, S, such that:

p 2 S ^ Am � FS ^ AN � BS ^ S � Cp(N)

do not need to be inserted in Hm

Some of the lemmas previously defined, are not affected by this new set of rules. We can
re-state these lemmas:

Lemma 7 When rules R1-R5, R6.2, R6.3 and R9 are used, m is-in Dp only if m has been delivered at
p.

Proof: The proof for Rules R1-R4 still applies. 2

Lemma 8 When rules R1-R5, R6.2, R6.3 and R9 are used, m 2 Hm0 only if m! m0.

Proof: The proof for Rules R1-R4 still applies. 2

Lemma 9 When rules R1-R5, R6.2, R6.3 and R9 are used, if m is delivered at p, m is-in Dp.

Proof: The proof for Rules R1-R5 still applies. 2
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Definition 4 We say that a message m is cited by another message m0 through a causal-separator S,

and we denote this relation as m
S
� m0, if m is in the causal history of m0 or, if for each member of the

separator, x 2 S, there is in the history of m0 a message, mx addressed to x that contains m in its history.
Formally:

m
S
� m0 def

= (m 2 Hm0) _ (A.1)
Am � BS ^ Am0 � FS ^ 8x2S9mx : m 2 Hmx ^mx 2 Hm0 ^ x 2 Amx (A.2)

Lemma 10 If m 2 Hp and 9q : q 2 Cp(m) then 9m12Hp
: m 2 Hm1 ^ q 2 Am1 .

Proof: m can be inserted in Hp as a result of rules R6.2 or R6.3. In any case, Cp(m) is set to ;. The
only rule that updates Cp(m) is rule R6.3. In this case, p must have sent m1 such that q 2 Am1 .
From rule R2, m 2 Hm1 and from rule R4, m1 2 Hp. 2

Lemma 11 If m 2 Hp and process p 2 S sends a message m0 then, m
S
� m0.

Proof: Assume that Am0 6� FS _ Am 6� BS _ S 6� Cp(m)). In this case, m is not covered by rule

R9 and, according to rule R2, is added to Hm0 . Thus, from clause A.1, we have m
S
� m0.

If the above condition is false, m is covered by rule R9 and will not be added to Hm0 .
However, from lemma 10, for all x such that x 2 Cp(m), exists mx in Hp such that m 2
Hmx ^ x 2 Amx . Since x 2 S, message mx will not be covered by rule R9 and will be added to

Hm0 . Thus, from clause A.2, we have m
S
�m0. 2

Lemma 12 If process p 2 S delivers a message m0 such that m
S
� m0, then m 2 Hp.

Proof: Assume that m 2 Hm0 . From rule R4, all elements ofHm0 are added toHp. Thus m 2 Hp.
If m 62 Hm0 then, by definition, exists mx in Hp such that m 2 Hmx ^ x 2 Amx . By rule R3,
m0 will only delivered after mx and from rule R4, all elements of Hmx are added to Hp. Thus
m 2 Hp. 2

We now prove the following theorem:

Theorem 8 Rules R1-R5, R6.2, R6.3 and R9 ensure message causal delivery .

Proof: The liveness proof given for Theorem 2 still applies here. In fact, rule R9 does not affect
the proof in any way. This matches the intuitive notion that the elimination of elements from
the causal history cannot compromise liveness. However, it can compromise safety:

Consider the actions of a process p that receives two messages m and m0 such that m! m0.
By rule R3, ifm 2 Hm0 then DELIVp(m) < DELIVp(m

0). If m! m0, there is a chain of messages,
from the sender of m, sm, to process p:

sm
m0

,! p1 : : :pi
mi

,! : : : pj�1
mj�1

,! pj : : :pn
mn

,! p

In this chain, we consider that all processes are different, that is, we consider only the
shortest path (note, that in this proof we do not consider rules to eliminate elements from the
causal history of processes).
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Thus, we have to prove that if m 2 Hsm , then m 2 Hmn for any number of separators
crossed in the path. Also note that, in order for rule R9 to be applied to m, due to a causal
separator S, process p 2 Am must be in the backward set of S. Thus if rule R9 is applicable to
m, and later in the path, some message is addressed to p, the chain of messages must cross the
causal separator twice. The proof is by induction on k the number of separators in the path:

Base case (k = 0): If there are no separators in the path, then the proof from theorem 1 still
applies, thus we will have m 2 Hmn .

Inductive step: Assume that the assumption is true if k = l � 1 separators are crossed in
the chain. We will prove that the relation is preserved when there are k = l separators in the
chain. Consider S the first separator crossed in the chain. Since the separator is crossed twice,
we must have two processes pi 2 S and pj 2 S in the path. Since S is the first separator crossed,
there are no separators between sm and pi, thus m 2 Hpi . From lemma 11, either m 2 Hmi

or
9mj2Hmi

: j 2 Amj ^m 2 Hmj
. In any case, either m or mj will be added to pi+1.

In the first case, since there are k = l � 1 separators in the path till pn, by assumption we
will have m in Hmn .

In the second case, for mj to be "retained" at some other separator, i.e., for rule R9 to be
applied to mj , pj must be in that separator backwards set. Again, in order for pj to be reached
later in the path, that other separator must be crossed twice. Since there are at most l � 1
separators in the path till pj , by assumption we will have mj in Hmj�1

. In this case, m will be
added to Hpj . Thus, m 2 Hmj

, and since there are no more than l � 1 separators in the path to
p, m 2 Hmn . 2
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