
Dynamic Light-Weight Groups�

Katherine Guo

Department of Computer Science

Cornell University

kguo@cs.cornell.edu

Lu��s Rodrigues

Departamento de Inform�atica

Faculdade Ciências, University of Lisboa

ler@di.fc.ul.pt

Abstract

The virtual synchrony model for group communication has proven
to be a powerful paradigm for building distributed applications. In
applications that use a large number of groups, signi�cant performance
gains can be attained if these groups share the resources required
to provide virtual synchrony. A service that maps user groups onto
instances of a virtually synchronous implementation is called a Light-
Weight Group Service.

This paper discusses the Light-Weight Group protocols in dynamic
environments, where mappings cannot be de�ned a priori and may
change over time. We show that it is possible to establish mappings
that promote sharing and, at the same time, minimize interference.
These mappings can be established in an automated manner, using
heuristics applied locally at each node. Experiments using an im-
plementation in the Horus system show that signi�cant performance
improvements can be achieved with this approach.

�Selected section of this report were published in the Proceedings of the 17th IEEE
International Conference on Distributed Computing Systems, Baltimore, Maryland, USA,
May, 1997. This work was partially supported by the CEC, through ESPRIT/ BRA
Working Group 26 (GODC) and the ARPA/ONR grant N00014-92-J-1866.

1

1 Introduction

Virtually synchronous group communication [2, 3, 11] has proven to be a pow-
erful paradigm for developing distributed applications. This paradigm allows
processes to be organized in groups within which messages are exchanged to
achieve a common goal. Virtual synchrony ensures that all processes in the
group receive consistent information about the group membership in the
form of views. The membership of a group may change over time because
new processes may join the group and old processes may fail or voluntarily
leave the group. Virtual synchrony also orders messages with view changes,
and guarantees that all processes that install two consecutive views deliver
the same set of messages between these views.

To provide virtual synchrony, failure detectors and protocols that provide
agreement and ordering are needed. Naturally, these components consume
some amount of system resources such as bandwidth and processing power,
but the overall performance impact of these services is usually small. Oppor-
tunities for optimization occur when several groups have a large percentage of
common members, by allowing these groups to share common services. Such
opportunities appear in several real-world applications. In the INFS system,
a reliable network �le system built on the Isis system, the replicas for a �le
change over time as users change the replication properties of the �le or as
access patterns to the �le change. The large number of �les amortized over
a small set of �le replication servers causes a signi�cant sharing of common
services. Another example is the Orbix+Isis product from Isis Distributed
Systems, and Iona Technologies Ltd, where the object-oriented programming
style creates many object groups over a smaller set of processes or machines.

Mapping several user level groups onto a single virtually synchronous
group can achieve this type of optimization. Since these groups share com-
mon resources, they can be implemented more e�ciently than standalone
groups and are called Light-Weight Groups (Lwgs). In contrast, the under-
lying virtually synchronous group is called a Heavy-Weight Group (Hwg)
in this context. A service that maps Lwgs onto Hwgs is usually called a
Light-Weight Group Service.

However, a tradeo� exists between resource sharing and interference. The
operation of some other unrelated group may interfere with the performance
of a given group. For instance, if a member of a given group fails, the re-

2

con�guration of that group may a�ect the behavior of other non-overlapping
groups which should not happen in the ideal situation. Due to this reason,
�nding appropriate mappings is a critical point in the design of a Light-
Weight Group Service.

Light-Weight Group Services have been implemented before in di�erent
group based communication systems [5, 8]. Unfortunately, such services im-
posed restrictions on group usage as a result of changing the interface of
the underlying virtually synchronous group. In a recent paper [9], we have
proposed a new design for the Lwg protocols that circumvents such limita-
tions, in particular, we have shown that the Light-Weight Group Service can
be implemented in a fully transparent manner. This new set of protocols
has already proven advantageous in static environments, where there is large
overlap among user groups.

In this paper we extend our work to dynamic environments, where map-
pings cannot be de�ned a priori and may change over time. We show the
possibility to establish mappings that promote sharing and, at the same
time, minimize interference. The establishment of these mappings can be
automated, using heuristics applied locally at each node. Experiments im-
plementing this approach in the Horus system [12] have shown signi�cant
performance improvements.

The paper is organized into �ve other sections. Related work is surveyed
in Section 2. In a recent paper [9], the design of the Transparent Light-
Weight Group Service is further explored, but Section 3 provides a brief
description. The heuristics to support dynamic mappings are discussed in
Section 4. Performance results obtained with an implementation in Horus
are presented in Section 5. Section 6 concludes the paper.

2 Related work

To our knowledge, Delta-4 [8] was the �rst system to o�er some form of
Light-Weight Group Service. The Delta-4 group communication subsystem
was structured as a layered architecture similar to the ISO stack. Virtually
synchronous support was provided in the lower layers of the architecture,
immediately on top of standard MAC protocols. Several session level groups
can be mapped onto a single MAC level group, but the association was

3

statically de�ned, called a connection in the Delta-4 terminology.

The Isis system has extended this principle, o�ering a Light-Weight
Group Service that supports dynamic associations between user level groups
and core Isis groups [5]. However, the Isis Lwgs require the speci�cation of
the target membership of a user group to make appropriate mapping deci-
sions.

Neither of these approaches is transparent, because they do not preserve
the originalHwg interface. In both cases, additional information is required.
This requirement forces existing applications to be changed in two ways.
The �rst change is that it prevents the Lwg protocols from being used as
an optional feature in a transparent manner. The second change is that it
nulli�es one of the most powerful features of virtual synchrony, the ability of
operation without a priori knowledge of the group membership. Moreover,
these previous approaches avoid the problem of �nding the most appropriate
mapping in a fully automated way by placing the burden on the user to locate
and provide a priori knowledge of possible sources of interference.

Some systems [1] do have all groups in the system sharing some resources,
such as a failure detector or an underlying ordered channel. Although these
systems are implementing a static form of a Light-Weight Group Service, they
do not address the problem of minimizing interference. To our knowledge,
this paper presents the �rst Lwg service that promotes resource sharing and,
at the same time, minimizes interference, in a fully automated manner.

3 The transparent Lwg service

3.1 Design overview

The main goal of the dynamic Lwg Service is to support resource sharing
by mapping several Lwgswith similar membership onto a single Hwgwhile
fully preserving the original Hwg interface. For added e�ciency, we also
construct this mapping between Lwgs and Hwgs in a completely automated
manner. As a positive side e�ect of resource sharing, it is possible to decrease
the latency of group operations by avoiding redundant startup procedures.

The Lwg Service performs its task by managing a pool of Hwgs and es-

4

tablishing associations between Lwgs and these Hwgs . Every time a new
Lwg is created, the Service must decide whether the Lwg should be associ-
ated with one of the existingHwgs (if any), or if a new Hwg should be added
to the pool. Whatever decision is made, the new Lwgwill be associated with
some Hwg and may share that Hwgwith other Lwgs . Since the design im-
poses no restriction on the way the membership of Lwgs changes in time,
mappings that were appropriate at one point may become ine�cient as the
system evolves. To compensate for these changes, the Lwg Service dynam-
ically rede�nes these mappings. When this happens, we say that a Lwg is
switched from one Hwg to another. If, at some point, a given Hwg becomes
unsuitable for establishing further mappings, it is released from the pool.
Thus, the pool of Hwgsmanaged by the Service expands and shrinks over
time, not only due to the creation of new Lwgs , but also due to changes in
membership in these groups.

The Lwg service then has three main tasks: (i) preserve the virtually
synchronous interface of the Hwgs to Lwg users; (ii) de�ne the mapping and
switching policies; and (iii) invoke a switching protocol, which is a protocol
that allows the association between a Lwg and a Hwg to be changed at run
time.

The �rst task is a critical to the overall design, because if no performance
advantages can be obtained by mapping several Lwgs onto a singleHwg , the
mapping and switching strategies becomes pointless. Due to this reason, we
�rst concentrate on developing and evaluating the protocols that support the
transparent Lwg design. These protocols are described in detail elsewhere [9].
For background information, the next section provides a brief description of
these protocols and of their performance.

3.2 Protocol operation

The protocols that implement the Light-Weight Group Service perform the
tasks required to o�er virtual synchrony (join a group, leave a group, and
multicast messages in a group) and switch the mappings between Lwgs and
Hwgs dynamically. These protocols are not tied to any particular architec-
ture, but were designed having the Isis, Horus [13, 12] and NavTech [14]
systems in mind. All these systems provide a virtually synchronous commu-
nication service.

5

Downcalls

Name Parameters

Join GroupId gid, Pid pid
Leave GroupId gid, Pid pid
Send GroupId gid, BitArray data
HoldOk GroupId gid

Upcalls

Name Parameters

View GroupId gid, PidList view
Data GroupId gid, Pid src, BitArray data
Hold GroupId gid

Table 1: VS interface primitives

3.2.1 Interface

A typical interface of a virtually synchronous layer contains the following
primitives, as listed in Table 1 (we denote the downcalls with the \.req"
su�x and the upcalls with the \.int" su�x): Join.req, allows a member to
join a group; Leave.req, allows a member to leave a group; Send.req, sends
a virtually synchronous multicast; View.int, installs a new view; Data.int,
indicates the delivery of a multicast; Hold.int, indicates that the tra�c
must be stopped temporarily (usually, when a view change in the virtually
synchronous layer is in process); and HoldOk.req, con�rms the Hold.int

indication. Hold.int and HoldOk.req may be hidden from the user at upper
layers.

The main goal of our design is to build a service that lets several user
groups to share the same virtually synchronous group in a transparent man-
ner. To accomplish this goal, the Light-Weight Group Service exports the
same interface as the virtual synchrony service, as illustrated in Figure 1.

3.2.2 Flush protocol

The core of the Light-Weight Group implementation is the ush protocol,
which is responsible for installing a new view. The protocol ensures that all

6

Dynamic Mapping Protocols

HWG Layer

User Layer

LWG Layer

VS Interface

VS Interface

Figure 1: Light-Weight Group service interface

7

messages delivered to some processes in a given view are delivered to all the
correct processes in that view before a new view is installed. The protocol
works as follows. The oldest member of the group, the coordinator, multicasts
a FLUSH message to initiate the protocol. When the FLUSH is received,
the application is requested to stop sending through the Hold.int interrupt.
When the corresponding HoldOk.req is received from the application, the
Lwgmember acknowledges the FLUSH message with a FLUSH OK. The
protocol is terminated by the coordinator which sends a VIEW message as
soon as a FLUSH OK is received from every member. When the VIEW mes-
sage is received, the tra�c is resumed by delivering the new view through the
lwg.View.int interrupt. In addition to the new membership of the group,
the VIEW message disseminates the identity of the appropriate Hwg for
the next view. Thus, in our Lwg Service, the ush protocol both changes
the group membership and executes the switch protocol. If a member pro-
cess fails or becomes unreachable while executing the ush protocol, another
round of the ush protocol starts immediately, collecting FLUSH OK replies
from currently available members. Therefore, the ush protocol does not
block.

3.2.3 Create/join and leave protocols

The create/join procedure consists of two main steps. In the �rst step, a
map is established between the Lwg and some Hwg . These mappings need
to be stored in a way that can be accessed by every process. Our protocols
store mappings in an external Name Service. To minimize access to the
name service, the joining process proposes a mapping based on its own local
Hwgs according to the mapping heuristics discussed in Section 4. In a single
access to the name service, the joining process either commits this mapping
or, in the case where the Lwg is already mapped onto some other Hwg ,
obtains the existing mapping. Additionally, if the process is not a member of
the selected Hwg , it joins the Hwg before executing the second step. The
second step consists of sending a JOIN message to all members of the Hwg .
When the JOIN message is received, the identi�er of the joining process is
added to a joiningList and the coordinator of the Lwg triggers a ush
protocol which, in turn, will install a new view.

The leave procedure is similar to the joining protocol. The process simply

8

sends a LEAVE message to all members of the Hwg . When the LEAVE
message is received, the identi�er of the process is added to a leavingList

and the coordinator of the Lwg triggers a ush protocol which, in turn, will
install a new view.

3.2.4 Message passing protocol

The principle of the message passing protocol is very simple. The Lwg service
encapsulates the Lwg data in a dedicated message which is multicast on the
Hwg . On the recipient side, when such message is received, the lwgid part
is examined and the data part is forwarded to the speci�ed Lwg .

A message multicast on a Hwg can be performed using two main ap-
proaches. In one approach, known as selective multicasting, the message is
multicast only to the relevant members of the Hwg [10]. In order to be
e�cient, this approach requires some hardware support. In the other ap-
proach, the message is multicast to all members of the Hwg and, then, each
site that is not a member of the concerned Lwg discards the message. This
is one of the sources of interference, since memory and CPU are wasted in
the processes where the message is received only to be discarded.

3.2.5 Switch protocol

Assume that a given Lwg , lwgId, needs to be switched from one Hwg ,
hwgFrom, to another Hwg , hwgTo. The switch protocol is initiated by some
process member of lwgId. In order to inform other members of lwgId of
the start of the switching procedure, it multicasts an OPEN message on
hwgFrom. When this message is received, all members of lwgId check if
they are already members of hwgTo and, when they are not, join this group.
When all members have joined hwgTo, the execution of the ush protocol is
triggered. The protocol installs a new view and commits the new mapping.
When a switch occurs, the name service is informed of the new mapping so
that further joins are directed to the appropriateHwg (see [9] for a discussion
of how concurrent joins and switches are handled).

9

3.2.6 Failure handling protocol

The basic failure handling protocol is quite simple because most of the com-
plexity is handled by the virtually synchronous service. Whenever a failure
is detected by a Hwg , a Hold.int is generated in order to stop the traf-
�c ow. This interrupt must be multiplexed to all Lwgsmapped onto that
Hwg . The Light-Weight Group Service waits for an acknowledgment from
every Lwg (in-transit messages can still be sent or received) and then ac-
knowledges the Hold.int interrupt. Finally, when a new view is installed
in the Hwg , the failed processes are removed from the views of all mapped
Lwgs .

3.3 An Implementation in Horus

3.3.1 Horus overview

Horus [13] is a group communication system which o�ers great exibility in
the properties provided by protocols. It uses virtually synchronous protocols
to support dynamic group membership, message ordering, synchronization
and failure handling.

In the Horus architecture, protocols are constructed dynamically by stack-
ing microprotocols, which support a common interface. Each microprotocol
o�ers a small integral set of communication properties, and Horus implements
them as di�erent layers.

Horus provides a large set of microprotocols. The following layers are
related to our design of the Light-Weight Group Service. The COM layer
provides the Horus interface over other low-level communication interfaces
which include IP, UDP, ATM, the x-kernel [7] and a network simulator.
The NAK layer provides reliable FIFO unicast and multicast. The FRAG
layer implements fragmentation and reassembly of messages. The MBRSHIP
layer guarantees virtual synchrony. In order to do failure detection and o�er
reliable FIFO communication, the NAK layer has each member periodically
multicasts "status" background messages in the group it is residing. These
"status" messages add load to the system as the number of groups in the
system increases. A major objective of our Lwg Service design is to eliminate
redundant background tra�c as much as possible.

10

3.3.2 Performance with identical Lwgs

To evaluate the e�ectiveness of the Lwg Service, we conducted a number of
tests on n identical four-member Lwgs . The tests used an implementation
of the Lwg Service in Horus and measured its impact on di�erent operations
such as join, leave, data transfer and recovery from crashes. These tests
are relevant because they show the improvements obtained when maximum
resource sharing is achieved, that is, when all Lwgs are mapped onto a single
Hwg . For self-containment, we reproduce the results for data transfer and
failure recovery (the remaining results can be found in [9]).

To evaluate the e�ect of Lwgs on failure recovery, we conducted the fol-
lowing test: a given process, member of n identical four-member groups,
crashes and forces these n groups to recon�gure. The recovery time, mea-
sured between the detection of the failure and the installation of a new view
is presented in Figure 2. When the Lwg service is used, all groups share
the same recovery procedure and the recovery time is almost constant, while
it shows a non-linear increase in the Hwg test. To evaluate the impact of
Lwg on data transfer, we measured one-way latency when one member is
multicasting 10-byte messages in one of the n groups. From Figure 2 we see
that the Lwg �gure stays constant at 1.25 milliseconds, while the Hwg �gure
increases dramatically to reach 2.9 milliseconds as n increases to 200.

These results show that the resource sharing promoted by the Lwg approach
o�ers clear performance advantages. These experiments were done in an en-
vironment where Lwgs fully overlap. In this paper, we extend these results
to more complex topologies and we show that, due to interference, mapping
all Lwgs onto a single Hwg is not always the optimal solution. The next
section discusses how better mappings can be achieved in the general case. .

4 Dynamic mapping

In the type of systems we are targeting (like Isis, Horus, orNavTech), when
a process joins or creates a group, it is not required to know in advance its fu-
ture membership. Actually, in most cases this membership cannot be known
in advance, as it often depends on run-time parameters like number and lo-
cation of users, load, occurrence of faults and so on. Thus, the Lwg Service

11

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

total # of groups n

re
co

ve
ry

 ti
m

e
(m

se
c)

HWG −−

LWG −

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

total # of groups n

on
e−

w
ay

 la
te

nc
y

(m
se

c)

HWG −−

LWG −

Figure 2: Recovery from crashes and data transfer

must be able to operate without this information, using heuristics to �nd the
most appropriate mappings between Lwgs and Hwgs .

4.1 The problem of interference

When all Lwgs have the same membership, good results are always achieved
when they are mapped onto a single Hwg . This begs the question whether
a single Hwg is always a good solution. The answer is no because two
Lwgsmay interfere with each other if they are mapped onto the same Hwg .

12

Usually insigni�cant when the Lwgs have the same membership, this interfer-
ence becomes increasingly disturbing as the membership di�ers and becomes
clearly disadvantageous when the Lwgs do not overlap. We can present some
potential sources of interference:

The �rst source of interference lies in the same FIFO channel shared by
all the Lwgswhen they are mapped onto the same Hwg . All the Lwgs also
share the same set of physical resources the FIFO channel is built on. This,
at least theoretically, reduces parallelism in the system: when a message
loss from one Lwg occurs, it can delay the delivery of messages from other
Lwgs . Today's technology rarely results in message losses due to bit errors,
but losses due to congestion are still common. With Quality of Service being
o�ered in the next generation of transport protocols such as RSVP [15] and
IPv6 [4], we expect fewer and fewer message losses. Therefore, the interfer-
ence from using the same FIFO channel is almost negligible in the future.

A second source of interference happens when the failure of aHwgmember
disturbs the operation of the Hwg and the Lwg (s) mapped onto it. Upon
failure, the Hwg usually goes through a ush procedure to enforce virtually
synchronous properties (this procedure was discussed in section 3.2). When-
ever the membership of the Lwg does not exactly match the membership
of the Hwg , the failures of processes which are not its own members may
disturb the operation of the Lwg .

Finally, if no selective addressing is available, that is, if it is impossible to
send messages to subsets of the whole Hwg , all messages regarding a given
Lwgwill be broadcast on the Hwg . This means that when the membership
of the Hwg is a superset of the membership of the Lwg , some processes will
have to spend resources (CPU and memory) discarding messages not ad-
dressed to them. This is a severe source of interference because the number
of messages a receiver can process per unit time is limited. This type of inter-
ference is even more severe when the members of disjoint Lwgs are located in
separate sub-networks. In this scenario, mapping both Lwgs onto the same
Hwgwould overload the network with tra�c that could be localized to each
sub-network.

Thus, the task of mapping Lwgs onto Hwgs addresses two conicting
goals: increasing resource sharing and minimizing interference.

13

4.2 The mapping problem

An optimal mapping exists for a given set of Lwgs that balances the twin
goals of increasing resource sharing and minimizing interference. The de-
termination of this optimal mapping depends not only on the criterion used
to evaluate the mapping (throughput, latency, failure-recovery time, etc.),
but also on several operational parameters, such as the protocols being used,
processing power, available memory, hardware architecture, and the network
technology and topology, etc. In the rest of this paper, we will concentrate on
general criteria that we believe e�ective in most architectures. Nevertheless,
to provide some insight on the general criteria, we summarize the analysis
of the mapping problem for a speci�c architecture (the Horus system) from
two di�erent perspectives, resource sharing and interference caused by data
tra�c.

In the Horus system, failure detection is performed by having each group
member multicast to every other member a \status" report background mes-
sage periodically (in the current con�guration, every 2 seconds). Experi-
ments show that the bottleneck for handling the background messages is the
receiver bu�er size [6]. Processors do not have enough input bu�er space to
handle all the input messages in the short amount of time, therefore, some
messages are dropped from the input bu�ers. As a result, an important
goal of resource sharing is to minimize the number of these background mes-
sages. Consider a pair of overlapping Lwgs , (lwg1; lwg2) of size (n1 + k)
and (n2 + k) respectively where k > 0 is the size of their overlap. If each
Lwg is mapped onto a di�erent Hwg (with membership identical to that of
the Lwg), Fa = (n1 + k)2 + (n2 + k)2 message interrupts are generated in
the system every period. If both groups are mapped onto the same Hwg ,
this number is Fb = (n1 + n2 + k)2. E�ective resource sharing occurs when
Fb < Fa, that is, when k >

p
2n1n2. Another way to express this result is

that a poorly chosen resource sharing policy may induce, only due to the
failure detection mechanism, an overhead of jFa � Fbjf = jk2 � 2n1n2jf ad-
ditional message interrupts per unit time, where f is the frequency at which
the failure detector runs.

Consider now the e�ect of interference. In Horus, selective addressing is
not available. This means that a multicast on a given Lwg is received by all
members of the underlying Hwg . For simplicity, assume the same scenario

14

as above and assume that every member multicasts periodically a message to
the each Hwg it belongs to. If each Lwg is mapped onto a di�erent Hwg ,
each process only receives the messages addressed to it. For example, a
process in lwg1 only would receive (n1 + k) messages periodically, while a
member of both lwg1 and lwg2 would receive (n1+n2+2k) messages, etc. If
both groups are mapped onto the same Hwg , every member would receive
(n1+n2+k) messages periodically, regardless of its a�liation. This overhead
caused by interference may cancel the savings induced by resource sharing.
The above analysis applies to any pair of overlapping Lwgs (lwg1, lwg2).
Either they are mapped onto two di�erent Hwgswith sizes being (n1 + k)
and (n2 + k) respectively, where k is the overlap of the Hwgs ; or they are
mapped onto one Hwg of size (n1 + n2 + k).

Of course, other e�ects could be taken into account. For instance, one
could examine the number of messages exchanged during failure recovery,
or the network load distribution according to the topology. However, these
considerations are not addressed here since the focus of this paper is not the
quest for the optimal mapping for a given system. Instead, the focus is to
show that better performance can be achieved when resource sharing and
interference are simultaneously taken into account. Later in the performance
section, we show that even applying some generic rules can be e�ective.

4.3 Create mappings

When a Lwg group is created, a mapping needs to be established. Unfor-
tunately, the future membership of either the new Lwg or of the existing
Hwgs cannot be foreseen (the membership of a Hwg is forced to grow with
the membership of the mapped Lwgs). As a result, the mapping decision is
of a heuristic nature, and consequently, prone to non-optimal results. Nat-
urally, heuristics can be tuned for speci�c applications. We concentrate on
general-purpose heuristics. Two main approaches can be followed when es-
tablishing a mapping for a Lwgwhich is being created. They are described
below.

The pessimistic approach assumes the membership of the new Lwgwill
be extremely di�erent from that of other running Lwgs , and creates a new
Hwg . If the assumption is proven later to be incorrect, one can try to switch
the Lwg to a more appropriate Hwg . The disadvantage of this approach

15

is that the heavier operation, creating a new Hwg , is always executed by
default.

The optimistic approach assumes the membership of the new Lwgwill be
similar to some other already existing Lwg . The new Lwg is mapped onto
some existing Hwg and if the choice is later proven to be inappropriate, the
Lwgwill be switched onto a more appropriate Hwg . This approach has the
advantage of performing by default a less expensive operation. Furthermore,
the expensive operation of joining a Hwg , if necessary, can be executed at
a less critical point of the application execution-path (for instance, using
moments of reduced communication).

Due to its advantages, we have followed the optimistic approach. The
mapping strategy works as follows:

optimistic mapping rule: when a Lwg is created, the Lwg Service maps

the Lwg onto an existing Hwgwith larger membership, that is, a

Hwgwith higher probability of including future members of the Lwg .

If several Hwgsmatch this criterion, the Hwgwith less Lwgs already

mapped onto it is selected which minimizes the shared channel disad-

vantage.

4.4 Adaptive strategies

The mapping rule tries to promote appropriate mappings. However, due
to the lack of information about the future, some of the mappings done at
group creation time will later reveal to be disadvantageous. For instance,
two non-overlapping Lwgsmight be mapped on the same Hwg . In extreme
cases, the mapping heuristic could lead to the existence of a single huge
Hwg in the system on which all Lwgswere mapped. To prevent such cases
from occurring, our approach includes the use of corrective measures. These
corrective measures are based on the ability to change the mappings between
Lwgs and Hwgs at run-time.

In general terms, the adaptive measures follow a number of simple guide-
lines:

� Since the ultimate goal is to promote resource sharing, Lwgswith sim-
ilar membership should be mapped onto the same Hwg . Keeping the

16

number of Hwgs low produces other advantages. When the number of
Hwgs is low, the search space is small and the heuristics can be ap-
plied in more e�cient ways. Also, some architectures contain a limited
number of hardware multicast addresses; it is possible to assign one of
such addresses to each Hwg if the number of Hwgs is small.

� To minimize interference, a Lwg should be mapped onto a Hwgwith
a similar membership.

� Due to system evolution, it is possible that a process will �nd itself
a member of a Hwgwithout having any Lwgmapped on it. If this
situation persists for some time, the process should leave the Hwg .
Ultimately, a Hwgwith no Lwgmapped onto it should be deleted.

These guidelines can be applied in several ways. One is to rely on some
central entity to determine a better con�guration based on a snapshot of
the existing mappings. After determining the new con�guration, this central
entity instructs each process about which Lwgs should be switched. This
solution is inherently not scalable.

Another approach relies exclusively on local heuristics to make switch-
ing decisions. This requires special care to ensure that local heuristics make
the system converge to some stable con�guration. It is also more di�cult,
if not impossible, to reach the optimal con�guration using only local infor-
mation. Nevertheless, this approach is scalable and allows non overlapping
sub-systems to operate with total independence. Due to this reason we have
experimented a number of local heuristics.

The merge, switch, shrink algorithms presented in Figure 3 are executed
at every process and are based on comparing the membership of all Lwgs and
Hwgs that are known to that process.

4.5 Instability, convergence and switching overhead

Poorly chosen local heuristics leads to instability, preventing the system from
converging to a stable mapping. To avoid this problem, we have implemented
a number of preventive measures, as described below.

17

De�nitions: (km and kc are con�guration parameters)
minority: given groups g1 � g2, g1 is a minority of g2

i� sizeof(g1) � sizeof(g2)=km.
closeness: given g1 � g2, g1 and g2 are close enough to each other

i� sizeof(g2) - sizeof(g1) � sizeof(g2)=kc.

Merge rule (for some con�guration parameter km)
Considering a Lwgs pair (lwg1; lwg2) with (hwg1; hwg2) as their
underlying Hwg pair, where sizeof(hwg1) = n1 + k,
sizeof(hwg2) = n2 + k and sizeof(hwg1 \ hwg2) = k.
if : ((hwg1 � hwg2 ^ hwg1 is a minority of hwg2)

_ (hwg2 � hwg1 ^ hwg2 is a minority of hwg1))
^ (k >

p
2n1n2) then

merge hwg1 and hwg2 into a single hwg;
fi

Switch rule

Considering a Lwg lwg1 with hwg1 as its underlying Hwg .
if (lwg1 is a minority of hwg1) then

if (9hwgx with membership close enough to lwg1) then
switch lwg1 to hwgx;

else

create a hwgnew with membership identical to lwg1;
switch lwg1 to hwgnew;

fi

fi

Shrink rule

for (each Hwgmember h) do
if (:(9 a Lwgmapped onto h))then h leaves its Hwg ; fi

od

Figure 3: The local algorithms

18

For each Lwg , only one process is responsible for changing its mapping.
This is the coordinator of the group, usually its oldest member. This strategy
prevents di�erent processes from making incompatible mapping decisions.

For a given con�guration, the mapping decision is deterministic. For
instance, if several Hwgsmatch a mapping criterion, the total order of group
identi�ers is used to make the selection. Following this approach, di�erent
invocations of the heuristics on the same con�guration will always achieve
the same results.

We have selected the parameters in a way that a signi�cant change in the
membership is required to de�ne a new mapping. Speci�cally, in our tests
we have used km = 4, kc = 4. In this setting, for a Lwg to be mapped on a
Hwg , the number of their common members must be greater than 75% of
the size of the Hwg , and the mapping remains stable until this number is
reduced to 25%.

To avoid a cascade of switches when groups are being created or deleted,
the heuristics are applied periodically with a relative large period. This
period is con�gurable; in our experiments, we have run the heuristics once
every minute. This also makes the overhead of executing the heuristics and
running the switch protocol negligible.

Although these heuristics were used with success in our experiments, we
must emphasize that the heuristics themselves were not the main goal of our
research. Our major concern was to implement and test the mechanisms
that allow mappings to be rede�ned at run-time and actually show that
performance improvements can be achieved if such heuristics are available.

5 Performance results

We tested the performance in Horus on a system of 8 SUN Sparc 10 worksta-
tions running SunOS 4.1.3, connected by a loaded 10M bps Ethernet. The
low level protocols used were UDP/IP with the Deering multicast extension.
We used two sets of n user groups where each group within a set has identical
membership. Set A contains user groups a1 to an, and set B, b1 to bn.

We de�ne average multicast latency as the average of the latencies of mul-
ticast from each member in user group a1 and each member in user group b1

19

HWG2HWG1

lwg a1

lwg an

...
lwg b1

...

lwg bn

Scenario C
HWG2HWG1

lwg a1

lwg an

...

lwg b1
...

lwg bn

Scenario D

HWG1

HWG2

lwg a1

lwg an

...

lwg b1
...

lwg bn

Scenario B

HWG1

Scenario A

lwg b1
...

lwg bn

lwg a1

lwg an

...

Figure 4: Test scenarios and mappings

to its respective group. The latency associated with a member was measured
when it is the only member multicasting 10-byte messages in the system.
This latency was averaged over 5000 tests.

To measure failure recovery time, we conducted the following test. Pro-
cess pa, a member of n user groups a1 to an, crashes and a1 to an are re-
con�gured. The crash recovery time Ra for groups in set A, measured at
their coordinator is the time between the detection of the failure and the
installation of a new view. This crash recovery time was averaged over 50
tests. Set B was tested in a similar manner where process pb, a member of n
user groups b1 to bn crashes, resulting in the recon�guration of b1 to bn. Rb

is the crash recovery time for groups in set B.

We de�ne average crash recovery time to be R = (sa=s)�Ra+(sb=s)�Rb,
where sa and sb are the group sizes for groups in set A and B respectively,
and s = sa + sb. This weighted average reects the e�ect of the mapping on
each member of the user groups.

20

In order to evaluate the performance of the Dynamic Lwg Service, we
have the system evolve through a series of scenarios, each corresponding to a
di�erent Lwgmembership setting. The four test scenarios A-D, illustrated
in Figure 4, cover the most representative combinations of Lwgmembership,
highlighting the advantages of LWGs. When the scenario changes, switching
decisions are made according to local heuristics and the switch protocol is
invoked as described in section 3.2.5. For a more detailed description of this
protocol, see [9].

In scenario A, Lwgs a1 to an are mapped on HWG1. Lwgs b1 to bn are
contained in Lwgs a1 to an. Since the membership of b1 to bn is just a minor-
ity of HWG1, they are dynamically mapped on a separate Hwg (HWG2).
In scenario B, Lwgs a1 to an become disjoint with Lwgs b1 to bn, so the
mapping remains unchanged and the membership of the Hwgs follows the
membership changes of the mapped Lwgs . In scenario C, there is a par-
tial overlap of Lwgs but not enough to merge them in a single Hwg . In
scenario D, the partial overlap of Lwgs becomes large enough to trigger the
merge rule, therefore all the Lwgs are mapped onto one Hwg (HWG1), and
HWG2 is destroyed. Finally, the system goes back to Scenario A where
both Hwgs are used to support the Lwgs . We have measured the average
multicast latency and average crash recovery time for each scenario in three
di�erent con�gurations:

� without the Lwg Service, where each user group has its own Hwg .

� with a simple static Lwg Service, where all Lwgs are mapped on the
same Hwg .

� with the Dynamic Lwg Service, where mappings are obtained using the
optimal mapping rules described in previous sections.

Figure 5 shows the results for all scenarios and for all con�gurations. We
will discuss each scenario in turn.

In scenario A, Lwgs in set B each have two members, but they are
mapped to an 8-member Hwg in the static case. This non-optimal map-
ping increases the interference between the Lwgs in set B and the underlying
Hwgwhich results in the average multicast latency of 3.25 milliseconds. In
the optimal mapping obtained from the dynamic con�guration, groups in

21

set B are mapped onto a two-member HWG2. The latency reduces to 2.75
milliseconds which is 18% lower than that of the static con�guration. The
average crash recovery time in both cases increases linearly with number of
groups n. The slope for the dynamic mapping is less steep than that of the
static mapping. The recovery time for the all-Hwg case is too big to �t in
the �gure, as when n = 100, the recovery time reaches 5 seconds.

In scenario B, all the Lwgs are of size 4, but, in the static case, they are
mapped onto an 8-member Hwg . This non-optimal mapping signi�cantly
increases the interference between the Lwgs and the underlying Hwg , re-
sulting in the latency being 2.25 milliseconds. The interference is extremely
large in this setting. The latency of the static mapping is even worse than
without a Lwg service, where all user groups are mapped onto a separate
Hwg . In the optimal con�guration, Lwgs in set A and B are mapped onto
HWG1 and HWG2 respectively. The reduced interference brings the latency
down to 1.25 milliseconds, a number 80% lower than the static case. In all
cases, the crash recovery time increases linearly with number of groups n.
Speci�cally, the dynamic mapping outperforms the static mapping and either
mapping performs better than no Lwg service at all.

Scenario C is similar to scenario B, except each group in set B has 5
members. When all the Lwgs are mapped onto the same Hwg in the static
case, the latency is 2.45 milliseconds. When Lwgs in set A and B are mapped
onto HWG1 and HWG2 respectively, the latency is 1.4 milliseconds, which is
75% lower than the static con�guration. As in previous scenarios, the crash
recovery time increases linearly with the number of groups n in all cases.
The slope for the dynamic mapping is less steep than that of the static case.
When no Lwg service is used we observe the largest recovery time: it reaches
2.2 seconds when n = 100.

In scenario D, the overlap between Lwgs in set A and set B is big enough
to trigger the merge algorithm, and all groups are mapped on a single Hwg .
Naturally, in this case, it does not make sense to compare the static and
dynamic cases, since the con�gurations are the same. To discuss the impact of
the merge algorithm, we show the performance before and after its execution.
Before the merge happens, Lwgs in set A are mapped onto one Hwg of size
7, and Lwgs in set B are mapped onto another Hwg of size 6. For most n,
the latency is only 3% lower after merging, i.e. 2.35 milliseconds versus 2.425
milliseconds. This small improvement is expected because only twoHwgs are

22

Scenario A

0 10 20 30 40 50 60 70 80 90 100
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

number of groups n in each of set A and B

av
e

on
e−

w
ay

 la
te

nc
y

(m
se

c)
− − − No LWG Service

− . − Static LWG Service

−−− Dynamic LWG Service

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

number of groups n in each of set A and B

av
e

cr
as

h
re

co
ve

ry
 ti

m
e

(m
se

c)

− . − Static LWG Service

−−− Dynamic LWG Service

Scenario B

0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

number of groups n in each of set A and B

av
e

on
e−

w
ay

 la
te

nc
y

(m
se

c)

− . − Static LWG Service

− − − No LWG Service

−−− Dynamic LWG Service

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

500

number of groups n in each of set A and B

av
e

cr
as

h
re

co
ve

ry
 ti

m
e

(m
se

c)
− − − No LWG Service

− . − Static LWG Service

−−− Dynamic LWG Service

Scenario C

0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

4

4.5

av
e

on
e−

w
ay

 la
te

nc
y

(m
se

c)

number of groups n in each of set A and B

− − − No LWG Service

− . − Static LWG Service

−−− Dynamic LWG Service

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

number of groups n in each of set A and B

av
e

cr
as

h
re

co
ve

ry
 ti

m
e

(m
se

c)

− . − Static LWG Service

−−− Dynamic LWG Service

Scenario D

0 10 20 30 40 50 60 70 80 90 100

2.25

2.3

2.35

2.4

number of groups n in each of set A and B

av
e

on
e−

w
ay

 la
te

nc
y

(m
se

c)

− . − Before Merging

−−− After Merging

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

200

number of groups n in each of set A and B

av
e

cr
as

h
re

co
ve

ry
 ti

m
e

(m
se

c)

− . − Before Merging

−−− After Merging

Figure 5: Test scenarios
23

2 3 4 5 6 7 8 9 10
1

1.5

2

2.5

3

3.5

4

4.5

5

HWG size

on
e−

w
ay

 la
te

nc
y

(m
se

c) − . − Static LWGS (non−optimal)

−−− Dynamic LWGS (optimal)

2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

HWG size

cr
as

h
re

co
ve

ry
 ti

m
e

(m
se

c) − . − Static LWGS (non−optimal)

−−− Dynamic LWGS (optimal)

Figure 6: Switch test

merged and resource sharing is limited. If a Lwg service is not used, however,
the latency increases sharply as n increases, reaching 62 milliseconds when
n = 100 (Note: it is not presented in the �gure because of the scale). Again,
the crash recovery time increases linearly with number of groups n in all
cases. The slope after merging is less steep than before merging. Once more,
the largest recovery time is obtained without any Lwg service; it reaches 3.7
seconds when n = 100 which is also not shown because of the scale.

Finally, to illustrate the e�ect of interference from improper mappings,
we conducted the following test. In the �rst non-optimal setting, we build a
two-member Lwg , and map it onto aHwg of size varying from 2 to 10. In the
second optimal setting, this two-member Lwg is mapped onto a Hwgwith
size 2. The results are illustrated in Figure 6 and one can clearly see how
interference a�ects the performance of the system.

6 Conclusions and future work

When several groups have the same or similar membership, resource sharing
can improve performance. Light-Weight Groups allow resource sharing by
mapping several user level groups onto a single virtually synchronous group.
Previous work has shown that this technique is highly e�ective when map-
pings can be statically de�ned.

In this paper we extend this approach to dynamic environments, where
mappings cannot be de�ned a priori and may change over time. We have
shown that it is possible to establish mappings that promote sharing and, at

24

the same time, minimize interference. The establishment of these mappings
can be automated, using heuristics applied locally at each node. Experiments
using an implementation in the Horus system showed three results: i) a simple
static Lwg service o�ers better performance than no Lwg service at all; ii)
a dynamic service which avoids interference can, signi�cantly improve the
e�ectiveness of this service; iii) these gains can be achieved even using some
general purpose heuristics. For future work, we intend to test the e�ectiveness
of our heuristics in other systems, such as NavTech .

Acknowledgments

We would like to thank Ken Birman, Andrew Feng, Roy Friedman and the
anonymous referees for their many helpful comments and suggestions.

References

[1] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A communication sub-
system for high availability. In Proc. 22nd Annual International Symposium
on Fault-Tolerant Computing, pages 76{84, July 1992.

[2] K. Birman and T. Joseph. Exploiting replication in distributed systems.
In Sape Mullender, editor, Distributed Systems, pages 319{366. ACM Press
Frontier Series, 1989.

[3] K. Birman and R. van Renesse, editors. Reliable Distributed Computing With
the ISIS Toolkit. Number ISBN 0-8186-5342-6. IEEE CS Press, March 1994.

[4] D. Comer. Internetworking with TCP/IP (3rd Edition). Prentice Hall, 1995.

[5] B. Glade, K. Birman, R. Cooper, and R. van Renesse. Light-weight process
groups in the ISIS system. Distributed System Engineering, (1):29{36, 1993.

[6] K. Guo, W. Vogels, and R. van Renesse. Structured virtual synchrony: Ex-
ploring the bounds of virtually synchronous group communication. In Pro-
ceedings of the 7th ACM SIGOPS European Workshop, September 1996.

[7] N. Hutchinson and L. Peterson. Design of the x-kernel. ACM Computer
Communication Review, 18(4):65{75, August 1988.

25

[8] D. Powell, editor. Delta-4 - A Generic Architecture for Dependable Distributed
Computing. ESPRIT Research Reports. Springer Verlag, November 1991.

[9] L. Rodrigues, K. Guo, A. Sargento, R. van Renesse, B. Grade, P. Ver��ssimo,
and K. Birman. A transparent light-weight group service. In Proceedings of
the 15th IEEE Symposium on Reliable Distributed Systems, pages 130{139,
Niagara-on-the-Lake, Canada, October 1996.

[10] L. Rodrigues, P. Ver��ssimo, and J. Ru�no. A low-level processor group mem-
bership protocol for LANs. In Proceedings of the 13th International Confer-
ence on Distributed Computing Systems, Pittsburgh, PA, May 1993.

[11] A. Schiper and A. Ricciardi. Virtually-synchronous communication based
on a weak failure suspector. In Digest of Papers, The 23th International
Symposium on Fault-Tolerant Computing, pages 534{543, Toulouse, France,
June 1993.

[12] R. van Renesse, K. Birman, R. Cooper, B. Glade, and P. Stephenson. Reliable
multicast between microkernels. In Proceedings of the USENIX Workshop on
Micro-Kernels and Other Architectures, pages 269{283, Seattle, Washington,
April 1992.

[13] R. van Renesse, K. Birman, and S. Ma�eis. Horus, a exible group commu-
nication system. Communications of the ACM, 39(4):76{83, April 1996.

[14] P. Ver��ssimo and L. Rodrigues. The NavTech large-scale distributed comput-
ing platform. Technical report, FCUL/IST. (in preparation).

[15] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: A
new Resource ReSerVation Protocol. IEEE Network Magazine, pages 8{18,
September 1993.

26

